- Award ID(s):
- 1740765
- PAR ID:
- 10294501
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference Content Access, Virtual Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Triggered situational interest in introductory courses can encourage student engagement, motivation, and value for the geosciences. In-person labs have traditionally played a unique role in triggering situational interest compared to lectures, but the COVID transition online disrupted these dynamics. We examine students’ self-reported situational interest from 6,463 responses to weekly surveys in online introductory geoscience lab courses at five U.S. institutions during fall 2020 and spring 2021. Approximately half of students reported that labs were equally (49.4%) or more interesting (4.3%) online, compared to a hypothetical in-person option. Analysis showed a statistically-significant interaction between student situational interest and the combined effect of 1) the course the students were enrolled in and 2) the topic of the lab session (F (20, 6395) = 4.038, p < 0.001). However, topic and course together explain only about 4% of the variance in the dataset, indicating that other factors have a large role in triggering interest. Students who indicated that labs were less interesting online (46.3%) most often cited not being able to physically interact with instructional materials (56.3%) and difficulty interacting with peers (30.6%). When asked what revisions would increase their situational interest, additional hands-on interaction (22.8%) and increased relevance to their life or future career (20.2%) were the answer choices students selected most frequently. These findings identify modifications and enhancements grounded in students’ self-reported interest that can inform the design of online introductory geology labs.more » « less
-
Merkle, Larry ; Doyle, Maureen ; Sheard, Judithe ; Soh, Leen-Kiat ; Dorn, Brian (Ed.)In Computer Science (CS) education, instructors use office hours for one-on-one help-seeking. Prior work has shown that traditional in-person office hours may be underutilized. In response many instructors are adding or transitioning to virtual office hours. Our research focuses on comparing in-person and online office hours to investigate differences between performance, interaction time, and the characteristics of the students who utilize in-person and virtual office hours. We analyze a rich dataset covering two semesters of a CS2 course which used in-person office hours in Fall 2019 and virtual office hours in Fall 2020. Our data covers students' use of office hours, the nature of their questions, and the time spent receiving help as well as demographic and attitude data. Our results show no relationship between student's attendance in office hours and class performance. However we found that female students attended office hours more frequently, as did students with a fixed mindset in computing, and those with weaker skills in transferring theory to practice. We also found that students with low confidence in or low enjoyment toward CS were more active in virtual office hours. Finally, we observed a significant correlation between students attending virtual office hours and an increased interest in CS study; while students attending in-person office hours tend to show an increase in their growth mindset.more » « less
-
In Computer Science (CS) education, instructors use office hours for one-on-one help-seeking. Prior work has shown that traditional in-person office hours may be underutilized. In response many instructors are adding or transitioning to virtual office hours. Our research focuses on comparing in-person and online office hours to investigate differences between performance, interaction time, and the characteristics of the students who utilize in-person and virtual office hours. We analyze a rich dataset covering two semesters of a CS2 course which used in-person office hours in Fall 2019 and virtual office hours in Fall 2020. Our data covers students' use of office hours, the nature of their questions, and the time spent receiving help as well as demographic and attitude data. Our results show no relationship between student's attendance in office hours and class performance. However we found that female students attended office hours more frequently, as did students with a fixed mindset in computing, and those with weaker skills in transferring theory to practice. We also found that students with low confidence in or low enjoyment toward CS were more active in virtual office hours. Finally, we observed a significant correlation between students attending virtual office hours and an increased interest in CS study; while students attending in-person office hours tend to show an increase in their growth mindset.more » « less
-
In the United States, the onset of COVID-19 triggered a nationwide lockdown, which forced many universities to move their primary assessments from invigilated in-person exams to unproctored online exams. This abrupt change occurred midway through the Spring 2020 semester, providing an unprecedented opportunity to investigate whether online exams can provide meaningful assessments of learning relative to in-person exams on a per-student basis. Here, we present data from nearly 2,000 students across 18 courses at a large Midwestern University. Using a meta-analytic approach in which we treated each course as a separate study, we showed that online exams produced scores that highly resembled those from in-person exams at an individual level despite the online exams being unproctored—as demonstrated by a robust correlation between online and in-person exam scores. Moreover, our data showed that cheating was either not widespread or ineffective at boosting scores, and the strong assessment value of online exams was observed regardless of the type of questions asked on the exam, the course level, academic discipline, or class size. We conclude that online exams, even when unproctored, are a viable assessment tool.
-
Battestilli, Lina ; Rebelsky, Samuel A ; Shoop, Libby (Ed.)We compare the exam security of three proctoring regimens of Bring-Your-Own-Device, synchronous, computer-based exams in a computer science class: online un-proctored, online proctored via Zoom, and in-person proctored. We performed two randomized crossover experiments to compare these proctoring regimens. The first study measured the score advantage students receive while taking un-proctored online exams over Zoom-proctored online exams. The second study measured the score advantage of students taking Zoom-proctored online exams over in-person proctored exams. In both studies, students took six 50-minute exams using their own devices, which included two coding questions and 8–10 non-coding questions. We find that students score 2.3% higher on non-coding questions when taking exams in the un-proctored format compared to Zoom proctoring. No statistically significant advantage was found for the coding questions. While most of the non-coding questions had randomization such that students got different versions, for the few questions where all students received the same exact version, the score advantage escalated to 5.2%. From the second study, we find no statistically significant difference between students’ performance on Zoom-proctored vs. in-person proctored exams. With this, we recommend educators incorporate some form of proctoring along with question randomization to mitigate cheating concerns in BYOD exams.more » « less