Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen‐fixing nodule cells. Ferroportin family members in model legume These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen‐fixing bacteroids in
The development of bioorthogonal fluorogenic probes constitutes a vital force to advance life sciences. Tetrazine‐encoded green fluorescent proteins (GFPs) show high bioorthogonal reaction rate and genetic encodability but suffer from low fluorogenicity. Here, we unveil the real‐time fluorescence mechanisms by investigating two site‐specific tetrazine‐modified superfolder GFPs via ultrafast spectroscopy and theoretical calculations. Förster resonance energy transfer is quantitatively modeled and revealed to govern the fluorescence quenching; for GFP150‐Tet with a fluorescence turn‐on ratio of ∼9, it contains trimodal subpopulations with good (P1), random (P2), and poor (P3) alignments between the transition dipole moments of protein chromophore (donor) and tetrazine tag (Tet‐v2.0, acceptor). By rationally designing a more free/tight environment, we created new mutants Y200A/S202Y to introduce more P2/P1 populations and improve the turn‐on ratios to ∼14/31, making the fluorogenicity of GFP150‐Tet‐S202Y the highest among all up‐to‐date tetrazine‐encoded GFPs. In live eukaryotic cells, the GFP150‐Tet‐v3.0‐S202Y mutant demonstrates notably increased fluorogenicity, substantiating our generalizable design strategy.
Ultrafast spectroscopy reveals FRET in action and inhomogeneous populations with different transition dipole moment alignments. Rational protein design of two new superfolder GFP mutants with record‐high fluorogenicity. Bioimaging application of the designed bioorthogonal protein mutant in live eukaryotic cells.
- NSF-PAR ID:
- 10373306
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Natural Sciences
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2698-6248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of atnt1 insertional mutant line, and synchrotron‐based X‐ray fluorescence assays were carried out in the nodule‐specificM. truncatula ferroportinMedicago truncatula nodule‐specific geneFerroportin2 (MtFPN2 ) is an iron‐efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early‐fixation zone of the nodules. Loss‐of‐function ofMtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to driveMtFPN2 expression inMtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confiningMtFPN2 expression to the vasculature did not improve the mutant phenotype.M. truncatula nodules. -
Summary Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (
ABA ), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB 1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, , showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofGPA 1agb1 mutants andagb1 /gpa1 double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA ‐regulated stomatal movements, which involveGPA 1 andAGB 1/AGG 3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. knockouts retained reactive oxygen species andAGB 1NO production, but lostYC 3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1 . Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB 1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1 . In sum, G‐protein signaling viaAGB 1/AGG 1/AGG 2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLC s leading to InsP3 production. -
Summary Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.
Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.
We isolated
cpk quintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23 quintuple mutant plants, but not other analyzedcpk quadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23 quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9 quintuple mutant plants.Our findings describe combinatorial
cpk mutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response. -
Summary Little is known about long‐distance mesophyll‐driven signals that regulate stomatal conductance. Soluble and/or vapor‐phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in
Arabidopsis thaliana by CO2/abscisic acid (ABA) was examined.We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll‐dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene‐signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2]‐shifts.
According to our research, higher [CO2] causes Arabidopsis rosettes to produce more ethylene. An ACC‐synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2‐induced stomatal movements. Ethylene‐insensitive receptor (gain‐of‐function),
etr1‐1 andetr2‐1 , and signaling,ein2‐5 andein2‐1 , mutants showed intact stomatal responses to [CO2]‐shifts, whereas loss‐of‐function ethylene receptor mutants, includingetr2‐3;ein4‐4;ers2‐3 ,etr1‐6;etr2‐3 andetr1‐6 , showed markedly accelerated stomatal responses to [CO2]‐shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC‐synthase octuple mutant and accelerated stomatal responses in theetr1‐6;etr2‐3 , andetr1‐6 , but not in theetr2‐3;ein4‐4;ers2‐3 mutants.These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2and ABA.
-
Abstract Like many Gram‐negative pathogens,
Shigella rely on a type three secretion system (T3SS) for injection of effector proteins directly into eukaryotic host cells to initiate and sustain infection. Protein secretion through the needle‐like type three secretion apparatus (T3SA) requires ATP hydrolysis by the T3SS ATPase Spa47, making it a likely target for in vivo regulation of T3SS activity and an attractive target for small molecule therapeutics against shigellosis. Here, we developed a model of an activated Spa47 homo‐hexamer, identifying two distinct regions at each protomer interface that we hypothesized to provide intermolecular interactions supporting Spa47 oligomerization and enzymatic activation. Mutational analysis and a series of high‐resolution crystal structures confirm the importance of these residues, as many of the engineered mutants are unable to form oligomers and efficiently hydrolyze ATP in vitro. Furthermore, in vivo evaluation ofShigella virulence phenotype uncovered a strong correlation between T3SS effector protein secretion, host cell membrane disruption, and cellular invasion by the tested mutant strains, suggesting that perturbation of the identified interfacial residues/interactions influences Spa47 activity through preventing oligomer formation, which in turn regulatesShigella virulence. The most impactful mutations are observed within the conserved Site 2 interface where the native residues support oligomerization and likely contribute to a complex hydrogen bonding network that organizes the active site and supports catalysis. The critical reliance on these conserved residues suggests that aspects of T3SS regulation may also be conserved, providing promise for the development of a cross‐species therapeutic that broadly targets T3SS ATPase oligomerization and activation.