Abstract Using genetic code expansion (GCE) to encode bioorthogonal chemistry has emerged as a promising method for protein labeling, both in vitro and within cells. Here, we demonstrate that tetrazine amino acids incorporated into proteins are highly tunable and have extraordinary potential for fast and quantitative bioorthogonal ligations. We describe the synthesis and characterize reaction rates of 29 tetrazine amino acids (20 of which are new) and compare their encoding ability into proteins using evolved Tet ncAA encoding tRNA/RS pairs. For these systems, we characterized on-protein Tet stability, reaction rates, and ligation extents, as the utility of a bioorthogonal labeling group depends on its stability and reactivity when encoded into proteins. By integrating data on encoding efficiency, selectivity, on-protein stability, and in-cell labeling for Tet tRNA/RS pairs, we developed the smallest, fastest, and most stable Tet system to date. This was achieved by introducing fluorine substituents to Tet4, resulting in reaction rates at the 10⁶ M⁻¹s⁻¹ level while minimizing degradation. This study expands the toolbox of bioorthogonal reagents for Tet-sTCO-based, site-specific protein labeling and demonstrates that the Tet-ncAA is a uniquely tunable, highly reactive, and encodable bioorthogonal functional group. These findings provide a foundation to further explore Tet-ncAA encoding and reactivity. 
                        more » 
                        « less   
                    
                            
                            Rational design for high bioorthogonal fluorogenicity of tetrazine‐encoded green fluorescent proteins
                        
                    
    
            Abstract The development of bioorthogonal fluorogenic probes constitutes a vital force to advance life sciences. Tetrazine‐encoded green fluorescent proteins (GFPs) show high bioorthogonal reaction rate and genetic encodability but suffer from low fluorogenicity. Here, we unveil the real‐time fluorescence mechanisms by investigating two site‐specific tetrazine‐modified superfolder GFPs via ultrafast spectroscopy and theoretical calculations. Förster resonance energy transfer is quantitatively modeled and revealed to govern the fluorescence quenching; for GFP150‐Tet with a fluorescence turn‐on ratio of ∼9, it contains trimodal subpopulations with good (P1), random (P2), and poor (P3) alignments between the transition dipole moments of protein chromophore (donor) and tetrazine tag (Tet‐v2.0, acceptor). By rationally designing a more free/tight environment, we created new mutants Y200A/S202Y to introduce more P2/P1 populations and improve the turn‐on ratios to ∼14/31, making the fluorogenicity of GFP150‐Tet‐S202Y the highest among all up‐to‐date tetrazine‐encoded GFPs. In live eukaryotic cells, the GFP150‐Tet‐v3.0‐S202Y mutant demonstrates notably increased fluorogenicity, substantiating our generalizable design strategy. Key pointsUltrafast spectroscopy reveals FRET in action and inhomogeneous populations with different transition dipole moment alignments.Rational protein design of two new superfolder GFP mutants with record‐high fluorogenicity.Bioimaging application of the designed bioorthogonal protein mutant in live eukaryotic cells. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10373306
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Natural Sciences
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2698-6248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.We isolatedcpkquintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23quintuple mutant plants, but not other analyzedcpkquadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9quintuple mutant plants.Our findings describe combinatorialcpkmutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response.more » « less
- 
            Summary Little is known about long‐distance mesophyll‐driven signals that regulate stomatal conductance. Soluble and/or vapor‐phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance inArabidopsis thalianaby CO2/abscisic acid (ABA) was examined.We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll‐dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene‐signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2]‐shifts.According to our research, higher [CO2] causes Arabidopsis rosettes to produce more ethylene. An ACC‐synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2‐induced stomatal movements. Ethylene‐insensitive receptor (gain‐of‐function),etr1‐1andetr2‐1, and signaling,ein2‐5andein2‐1, mutants showed intact stomatal responses to [CO2]‐shifts, whereas loss‐of‐function ethylene receptor mutants, includingetr2‐3;ein4‐4;ers2‐3,etr1‐6;etr2‐3andetr1‐6, showed markedly accelerated stomatal responses to [CO2]‐shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC‐synthase octuple mutant and accelerated stomatal responses in theetr1‐6;etr2‐3, andetr1‐6, but not in theetr2‐3;ein4‐4;ers2‐3mutants.These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2and ABA.more » « less
- 
            Abstract One of the major challenges in evaluating the suitability of potential ∼700 E3 ligases for target protein degradation (TPD) is the lack of binders specific to each E3 ligase. Here we apply genetic code expansion (GCE) to encode a tetrazine-containing non-canonical amino acid (Tet-ncAA) site-specifically into the E3 ligase, which can be conjugated with strained trans-cyclooctene (sTCO) tethered to a neo-substrate protein binder by click chemistry within living cells. The resulting E3 ligase minimally modified and functionalized in an E3-ligand free (ELF) manner, can be evaluated for TPD of the neo-substrate. We demonstrate that CRBN encoded with clickable Tet-ncAA, either in the known immunomodulatory drug (IMiD)-binding pocket or across surface, can be covalently tethered to sTCO-linker-JQ1 and recruit BRD2/4 for CRBN mediated degradation, indicating the high plasticity of CRBN for TPD. The degradation efficiency is dependent on location of the Tet-ncAA encoding on CRBN as well as the length of the linker, showing the capability of this approach to map the surface of E3 ligase for identifying optimal TPD pockets. This ELF-degrader approach has the advantages of not only maintaining the native state of E3 ligase, but also allowing the interrogation of E3 ligases and target protein partners under intracellular conditions and can be applied to any known E3 ligase.more » « less
- 
            Summary Establishment of symbiosis between plants and arbuscular mycorrhizal (AM) fungi depends on fungal chitooligosaccharides (COs) and lipo‐chitooligosaccharides (LCOs). The latter are also produced by nitrogen‐fixing rhizobia to induce nodules on leguminous roots. However, host enzymes regulating structure and levels of these signals remain largely unknown.Here, we analyzed the expression of a β‐N‐acetylhexosaminidase gene ofMedicago truncatula(MtHEXO2) and biochemically characterized the enzyme. Mutant analysis was performed to study the role ofMtHEXO2during symbiosis.We found that expression ofMtHEXO2is associated with AM symbiosis and nodulation.MtHEXO2expression in the rhizodermis was upregulated in response to applied chitotetraose, chitoheptaose, and LCOs.M. truncatulamutants deficient in symbiotic signaling did not show induction ofMtHEXO2. Subcellular localization analysis indicated that MtHEXO2 is an extracellular protein. Biochemical analysis showed that recombinant MtHEXO2 does not cleave LCOs but can degrade COs intoN‐acetylglucosamine (GlcNAc).Hexo2mutants exhibited reduced colonization by AM fungi; however, nodulation was not affected inhexo2mutants.In conclusion, we identified an enzyme, which inactivates COs and promotes the AM symbiosis. We hypothesize that GlcNAc produced by MtHEXO2 may function as a secondary symbiotic signal.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
