skip to main content


Title: The relative class number one problem for function fields, I
Abstract

We reduce the classification of finite extensions of function fields (of curves over finite fields) with the same class number to a finite computation; complete this computation in all cases except when both curves have base field$$\mathbb {F}_2$$F2and genus$$>1$$>1; and give a conjectural answer in the remaining cases. The conjecture will be resolved in subsequent papers.

 
more » « less
Award ID(s):
1946311
NSF-PAR ID:
10373320
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Research in Number Theory
Volume:
8
Issue:
4
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We introduce a family of Finsler metrics, called the$$L^p$$Lp-Fisher–Rao metrics$$F_p$$Fp, for$$p\in (1,\infty )$$p(1,), which generalizes the classical Fisher–Rao metric$$F_2$$F2, both on the space of densities$${\text {Dens}}_+(M)$$Dens+(M)and probability densities$${\text {Prob}}(M)$$Prob(M). We then study their relations to the Amari–C̆encov$$\alpha $$α-connections$$\nabla ^{(\alpha )}$$(α)from information geometry: on$${\text {Dens}}_+(M)$$Dens+(M), the geodesic equations of$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)coincide, for$$p = 2/(1-\alpha )$$p=2/(1-α). Both are pullbacks of canonical constructions on$$L^p(M)$$Lp(M), in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$\alpha $$α-geodesics as being energy minimizing curves. On$${\text {Prob}}(M)$$Prob(M), the$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$L^p(M)$$Lp(M), but in this case they no longer coincide unless$$p=2$$p=2. Using this transformation, we solve the geodesic equation of the$$\alpha $$α-connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$F_p$$Fp, and study their relation to$$\nabla ^{(\alpha )}$$(α).

     
    more » « less
  2. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

     
    more » « less
  3. Abstract

    For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$X=C1××Cdof smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$X=C1×C2of two curves over$$\mathbb {Q} $$Qwith positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$J1(Q)J2(Q)εCH0(C1×C2)is finite, where$$J_i$$Jiis the Jacobian variety of$$C_i$$Ci. Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$E1,E2with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$X=C1××Cdfor which the analogous map$$\varepsilon $$εhas finite image.

     
    more » « less
  4. Abstract

    Fix a positive integernand a finite field$${\mathbb {F}}_q$$Fq. We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$rk(E), then-Selmer group$$\text {Sel}_n(E)$$Seln(E), and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$d2over$${\mathbb {F}}_q(t)$$Fq(t). We compute this joint distribution in the largeqlimit. We also show that the “largeq, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains.

     
    more » « less
  5. Abstract

    We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$G=Z2×G0for a finite abelian group $$G_0$$G0, a subsetEof $$G_0$$G0, and two finite subsets$$F_1,F_2$$F1,F2of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$Z2×Ecan be tiled by translations of$$F_1,F_2$$F1,F2. In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$Z2). A similar construction also applies for$$G=\mathbb {Z}^d$$G=Zdfor sufficiently large d. If one allows the group$$G_0$$G0to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.

     
    more » « less