skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The relative class number one problem for function fields, I
Abstract We reduce the classification of finite extensions of function fields (of curves over finite fields) with the same class number to a finite computation; complete this computation in all cases except when both curves have base field$$\mathbb {F}_2$$ F 2 and genus$$>1$$ > 1 ; and give a conjectural answer in the remaining cases. The conjecture will be resolved in subsequent papers.  more » « less
Award ID(s):
1946311
PAR ID:
10373320
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Research in Number Theory
Volume:
8
Issue:
4
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ X = C 1 × C 2 of two curves over$$\mathbb {Q} $$ Q with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ J 1 ( Q ) J 2 ( Q ) ε CH 0 ( C 1 × C 2 ) is finite, where$$J_i$$ J i is the Jacobian variety of$$C_i$$ C i . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ E 1 , E 2 with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d for which the analogous map$$\varepsilon $$ ε has finite image. 
    more » « less
  2. Abstract We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group $$G_0$$ G 0 , a subsetEof $$G_0$$ G 0 , and two finite subsets$$F_1,F_2$$ F 1 , F 2 of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$ Z 2 × E can be tiled by translations of$$F_1,F_2$$ F 1 , F 2 . In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$ F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ Z 2 ). A similar construction also applies for$$G=\mathbb {Z}^d$$ G = Z d for sufficiently large d. If one allows the group$$G_0$$ G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. 
    more » « less
  3. Abstract Datta and Johnsen (Des Codes Cryptogr 91:747–761, 2023) introduced a new family of evaluation codes in an affine space of dimension$$\ge 2$$ 2 over a finite field$${\mathbb {F}}_q$$ F q where linear combinations of elementary symmetric polynomials are evaluated on the set of all points with pairwise distinct coordinates. In this paper, we propose a generalization by taking low dimensional linear systems of symmetric polynomials. Computation for small values of$$q=7,9$$ q = 7 , 9 shows that carefully chosen generalized Datta–Johnsen codes$$\left[ \frac{1}{2}q(q-1),3,d\right] $$ 1 2 q ( q - 1 ) , 3 , d have minimum distancedequal to the optimal value minus 1. 
    more » « less
  4. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  5. Abstract Fix a positive integernand a finite field$${\mathbb {F}}_q$$ F q . We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$ rk ( E ) , then-Selmer group$$\text {Sel}_n(E)$$ Sel n ( E ) , and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$ d 2 over$${\mathbb {F}}_q(t)$$ F q ( t ) . We compute this joint distribution in the largeqlimit. We also show that the “largeq, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains. 
    more » « less