Abstract R-process-enhanced (RPE) stars are rare and typically metal-poor ([Fe/H] < −1.0), primarily found in the Milky Way halo system and dwarf galaxies. This study reports the discovery of two relatively bright, highly RPE stars ([Eu/Fe] > +0.70) located in the Milky Way disk, with [Fe/H] of −0.34 and −0.80, respectively. These two stars are selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope medium-resolution (R ∼ 7500) spectroscopic survey. Follow-up high-resolution (R ∼ 25,000) observations were conducted with the High Optical Resolution Spectrograph installed on the 10.4 m Gran Telescopio Canarias. We perform the determination of elemental abundances and calculate the orbital parameters. We find that they arer-II stars with elemental abundances in agreement with the solarr-process pattern. These two objects are chemically and dynamically consistent with membership in the Galactic disk and exhibit no evidence of being part of accreted systems.
more »
« less
Chemical Abundances of Eight Highly-extincted Milky Way Planetary Nebulae*
Abstract Low- and intermediate-mass (0.8M⊙<M< 8M⊙) stars that evolve into planetary nebulae (PNe) play an important role in tracing and driving Galactic chemical evolution. Spectroscopy of PNe enables access to both the initial composition of their progenitor stars and products of their internal nucleosynthesis, but determining accurate ionic and elemental abundances of PNe requires high-quality optical spectra. We obtained new optical spectra of eight highly-extincted PNe with limited optical data in the literature using the Low Resolution Spectrograph 2 on the Hobby–Eberly Telescope. Extinction coefficients, electron temperatures and densities, and ionic and elemental abundances of up to 11 elements (He, N, O, Ne, S, Cl, Ar, K, Fe, Kr, and Xe) are determined for each object in our sample. Where available, astrometric data from Gaia eDR3 is used to kinematically characterize the probability that each object belongs to the Milky Way's thin disk, thick disk, or halo. Four of the PNe show kinematic and chemical signs of thin disk membership, while two may be members of the thick disk. The remaining two targets lack Gaia data, but their solar O, Ar, and Cl abundances suggest thin disk membership. Additionally, we report the detection of broad emission features from the central star of M 3–35. Our results significantly improve the available information on the nebular parameters and chemical compositions of these objects, which can inform future analyses.
more »
« less
- Award ID(s):
- 1715332
- PAR ID:
- 10373397
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 5
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 185
- Size(s):
- Article No. 185
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Grouping stars by chemical similarity has the potential to reveal the Milky Way’s evolutionary history. The APOGEE stellar spectroscopic survey has the resolution and sensitivity for this task. However, APOGEE lacks access to strong lines of neutron-capture elements (Z> 28), which have nucleosynthetic origins that are distinct from those of the lighter elements. We assess whether APOGEE abundances are sufficient for selecting chemically similar disk stars by identifying 25 pairs of chemical “doppelgängers” in APOGEE DR17 and following them up with the Tull spectrograph, an optical,R∼ 60,000 echelle on the McDonald Observatory 2.7 m telescope. Line-by-line differential analyses of pairs’ optical spectra reveal neutron-capture (Y, Zr, Ba, La, Ce, Nd, and Eu) elemental abundance differences of Δ[X/Fe] ∼ 0.020 ± 0.015 to 0.380 ± 0.15 dex (4%–140%), and up to 0.05 dex (12%) on average, a factor of 1–2 times higher than intracluster pairs. This is despite the pairs sharing nearly identical APOGEE-reported abundances and [C/N] ratios, a tracer of giant-star age. This work illustrates that even when APOGEE abundances derived from spectra with a signal-to-noise ratio > 300 are available, optically measured neutron-capture element abundances contain critical information about composition similarity. These results hold implications for the chemical dimensionality of the disk, mixing within the interstellar medium, and chemical tagging with the neutron-capture elements.more » « less
-
Abstract Phosphorus (P) is a critical element for life on Earth, yet the cosmic production sites of P are relatively uncertain. To understand how P has evolved in the solar neighborhood, we measured abundances for 163 FGK stars over a range of –1.09 < [Fe/H] < 0.47 using observations from the Habitable-zone Planet Finder instrument on the Hobby–Eberly Telescope. Atmospheric parameters were calculated by fitting a combination of astrometry, photometry, and Fe I line equivalent widths. Phosphorus abundances were measured by matching synthetic spectra to a P I feature at 10529.52 Å. Our [P/Fe] ratios show that chemical evolution models generally underpredict P over the observed metallicity range. Additionally, we find that the [P/Fe] differs by ∼0.1 dex between thin disk and thick disk stars that were identified with kinematics. The P abundances were compared withα-elements, iron-peak, odd-Z, and s-process elements, and we found that the evolution of P in the disk most strongly resembles that of theα-elements. We also find that molar P/C and N/C ratios for our sample match the scatter seen from other abundance studies. Finally, we measure a [P/Fe] = 0.09 ± 0.1 ratio in one low-αhalo star and probable Gaia–Sausage–Enceladus member, an abundance ratio ∼0.3–0.5 dex lower than the other Milky Way disk and halo stars at similar metallicities. Overall, we find that P is likely most significantly produced by massive stars in core-collapse supernovae, based on the largest P abundance survey to date.more » « less
-
Abstract We have developed a method for determining elemental Fe-group abundances in planetary nebulae using an infrared emission line of Zn, the least refractory Fe-group species. Many planetary nebulae, particularly those of the Milky Way’s thick disk and bulge, display subsolar [Fe/H] (as inferred from Zn) although their abundances of α elements such as O, S, and Ar are nearly solar. We discuss the implications for determining enhancements of species synthesized by the progenitor star during the AGB (e.g., s -process products), and for galactic chemical evolution in view of the metallicity dependence of AGB nucleosynthetic yields.more » « less
-
Abstract Orbital characteristics based on Gaia Early Data Release 3 astrometric parameters are analyzed for ∼1700r-process-enhanced (RPE; [Eu/Fe] > +0.3) metal-poor stars ([Fe/H] ≤ −0.8) compiled from theR-Process Alliance, the GALactic Archaeology with HERMES (GALAH) DR3 survey, and additional literature sources. We find dynamical clusters of these stars based on their orbital energies and cylindrical actions using theHDBSCANunsupervised learning algorithm. We identify 36 chemodynamically tagged groups (CDTGs) containing between five and 22 members; 17 CDTGs have at least 10 member stars. Previously known Milky Way (MW) substructures such as Gaia-Sausage-Enceladus, the splashed disk, the metal-weak thick disk, the Helmi stream, LMS-1 (Wukong), and Thamnos are reidentified. Associations with MW globular clusters are determined for seven CDTGs; no recognized MW dwarf galaxy satellites were associated with any of our CDTGs. Previously identified dynamical groups are also associated with our CDTGs, adding structural determination information and possible new identifications. Carbon-enhanced metal-poor RPE (CEMP-r) stars are identified among the targets; we assign these to morphological groups in a Yoon–BeersA(C)cversus [Fe/H] diagram. Our results confirm previous dynamical analyses that showed RPE stars in CDTGs share common chemical histories, influenced by their birth environments.more » « less
An official website of the United States government
