skip to main content


Title: Penetrating Electric Field Simulated by the MAGE and Comparison With ICON Observation
Abstract

Using the newly developed, Multiscale Atmosphere‐Geospace Environment (MAGE) model, we simulated the penetrating electric field in the equatorial region under different interplanetary magnetic field (IMF) BZconditions during September 2020. Two intervals were selected for detailed analysis and the latter one was compared with the vertical ion drift data from the NASA Ionospheric Connection Explorer (ICON) satellite. The MAGE simulations show that in southward IMF (S‐IMF) cases, the dawn‐dusk electric potential drop at the equator is about 12% of the cross polar cap potential difference. Based on the MAGE simulation, the dawn‐dusk potential drop at the equator varies nearly instantaneously on the order of a few minutes with the changes in the IMF BZor interplanetary electric field, which in turn alters the vertical ion drift. The daytime changes of the equatorial vertical ion drift in response to the penetrating electric field related to the IMF BZare only half of that during the nighttime. ICON data, though not inconsistent with the simulation, were not able to verify the occurrence of penetrating electric field because of its unfavorable location at the time. The MAGE simulation shows a pre‐reversal enhancement (PRE) during southward IMF cases, but the PRE was absent in the ICON IVM observations. Further observations and modeling are needed to resolve this discrepancy.

 
more » « less
NSF-PAR ID:
10373415
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present examples of high‐latitude field‐aligned current (FAC) and toroidal magnetic potential patterns in both hemispheres reconstructed at a 2‐min cadence using an updated optimal interpolation (OI) method that ingests magnetic perturbation data provided by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) program. A solstice and an equinoctial event are studied to demonstrate the reconstructed patterns and to provide scientific insights into FAC response to different solar wind drivers. For the 14 June 2011 high‐speed stream event with mostly northwardBzdriving, we found persistently stronger FACs in the Northern Hemisphere. Extreme interhemispheric asymmetry is associated with the interplanetary magnetic field (IMF) direction and large dipole tilt, consistent with earlier studies. FAC asymmetries seen during an isolated substorm can be attributed to dipole tilt. During relatively low geomagnetic activity, the FAC response to IMFBxchanges is identified. For the 17–18 March 2013 period, we provide global snapshots of rapid FAC changes related to an interplanetary shock passage. We further present comparisons between instantaneous and mean behaviors of FAC for the solar wind sheath passage and interplanetary coronal mass ejection southwardBzinterval and northwardBzintervals. We show that (1) sheath passage results in strong FAC and high variation in the dayside polar cap region and pre‐midnight region, different from the typical R1/R2 currents during prolonged southwardBz; (2) four‐cell reverse patterns appear during northwardBzbut are not stable; and (3) persistent dawn‐dusk asymmetry is seen throughout the storm, especially during an extreme substorm, likely associated with a dawnside current wedge.

     
    more » « less
  2. Abstract

    We study the variations of the topside ionospheric ion density measured by Defense Meteorological Satellite Program satellites during the intense magnetic storm on 7–10 November 2004. It is found for the first time that quasi‐periodic enhancements in the ion density with a period of ∼6 hr occur nearly simultaneously at 0630, 0830, and 0930 local time in the dawn sector during the storm main phase with southward interplanetary magnetic field (IMF). The quasi‐periodic density enhancements extend from the southern subauroral latitudes to the northern subauroral latitudes. In the dusk sector, the topside ion density during the storm main phase is increased at middle latitudes for ∼12 hr but shows decrease or relatively small increase over the magnetic equator, indicating that penetration electric fields dominate the ion density redistribution. Similar quasi‐periodic enhancements in the topside ion density are also observed in the dawn sector during other intense magnetic storms. The solar wind and IMF do not have quasi‐periodic variations in this storm case. Periodic processes in geospace, such as periodic substorms in the magnetosphere, waves and tides in the atmosphere, and traveling ionospheric disturbances, cannot explain the observed periodic enhancements of the ionospheric ion density. We suggest that the magnetosphere‐ionospheric‐thermospheric system may have an intrinsic period of ∼6 hr and that oscillations of the magnetosphere‐ionospheric‐thermospheric system with this period can be excited during intense magnetic storms, although the mechanisms for the generation of the long‐periodic oscillations are not understood.

     
    more » « less
  3. Abstract

    On 11 June 2017, a sudden solar wind dynamic pressure decrease occurred at 1437 UT according to the OMNI solar wind data. The solar wind velocity did not change significantly, while the density dropped from 42 to 10 cm−3in a minute. The interplanetary magnetic fieldBZwas weakly northward during the event, while theBYchanged from positive to negative. Using the University of Michigan Block Adaptive Tree Solarwind Roe Upwind Scheme global magnetohydrodynamic code, the global responses to the decrease in the solar wind dynamic pressure were studied. The simulation revealed that the magnetospheric expansion consisted of two phases similar to the responses during magnetospheric compression, namely, a negative preliminary impulse and a negative main impulse phase. The simulated plasma flow and magnetic fields reasonably reproduced the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric Multiscale spacecraft in situ observations. Two separate pairs of dawn‐dusk vortices formed during the expansion of the magnetosphere, leading to two separate pairs of field‐aligned current cells. The effects of the flow and auroral precipitation on the ionosphere‐thermosphere (I‐T) system were investigated using the Global Ionosphere Thermosphere Model driven by simulated ionospheric electrodynamics. The perturbations in the convection electric fields caused enhancements in the ion and electron temperatures. This study shows that, like the well‐studied sudden solar wind pressure increases, sudden pressure decreases can have large impacts in the coupled I‐T system. In addition, the responses of the I‐T system depend on the initial convection flows and field‐aligned current profiles before the solar wind pressure perturbations.

     
    more » « less
  4. Abstract

    During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic fieldBz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low‐latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were directly transferred into and then propagated throughout the magnetosphere, generating EMIC waves on global scales. The generation mechanism presumably involved the development of temperature anisotropies via perpendicular pressure perturbations, as evidenced by strong correlations between the pressure variations and the intensifications of the waves globally. Electron precipitation was recorded by the Balloon Array for RBSP Relativistic Electron Losses balloons, although it did not have the same widespread signatures as the waves and, in fact, appears to have been quite patchy in character. Observations from Van Allen Probe A satellite (at postmidnight local time) showed clear butterfly distributions, and it may be possible that the EMIC waves contributed to the development of these distribution functions. Ion precipitation was also recorded by the Polar‐orbiting Operational Environmental Satellite satellites, though tended to be confined to the dawn‐dusk meridians.

     
    more » « less
  5. Abstract

    There is still an inadequate understanding of how the interplanetary magnetic field (IMF) east‐west component (By) affects thermospheric composition, and other ionospheric and thermospheric fields in a systematic way. Utilizing the state‐of‐art first‐principles Coupled Magnetosphere Ionosphere Thermosphere (CMIT) modeling and TIMED/Global Ultraviolet Imager (GUVI)‐observed ΣO/N2covering an entire solar cycle (year 2002–2016), as well as a neutral parcel trajectory tracing technique, we emphasize that not only the direction ofBy, but also its strength relative to the IMF north‐south component (Bz) that has important effects on high latitude convection, Joule heating, electron density, neutral winds, and neutral composition patterns in the upper thermosphere. The Northern Hemisphere convection pattern becomes more twisted for positiveBycases than negative cases: the dusk cell becomes more rounded compared with the dawn cell. Consequently, equatorward neutral winds are stronger during postmidnight hours in negativeBycases than in positiveBycases, creating a favorable condition for neutral composition disturbances (characterized by low ΣO/N2) to expand to lower latitudes. This may lead to a more elongated ΣO/N2depletion area along the morning‐premidnight direction for negativeByconditions compared with the positiveByconditions. Backward neutral parcel trajectories indicate that a lower ΣO/N2parcel in negativeBycases comes from lower altitudes, as compared with that for positiveBycases, leading to larger enhancements of N2in the former case.

     
    more » « less