skip to main content


Title: Ionospheric Oscillations With a Quasi‐Period of ∼6 hr During Intense Magnetic Storms
Abstract

We study the variations of the topside ionospheric ion density measured by Defense Meteorological Satellite Program satellites during the intense magnetic storm on 7–10 November 2004. It is found for the first time that quasi‐periodic enhancements in the ion density with a period of ∼6 hr occur nearly simultaneously at 0630, 0830, and 0930 local time in the dawn sector during the storm main phase with southward interplanetary magnetic field (IMF). The quasi‐periodic density enhancements extend from the southern subauroral latitudes to the northern subauroral latitudes. In the dusk sector, the topside ion density during the storm main phase is increased at middle latitudes for ∼12 hr but shows decrease or relatively small increase over the magnetic equator, indicating that penetration electric fields dominate the ion density redistribution. Similar quasi‐periodic enhancements in the topside ion density are also observed in the dawn sector during other intense magnetic storms. The solar wind and IMF do not have quasi‐periodic variations in this storm case. Periodic processes in geospace, such as periodic substorms in the magnetosphere, waves and tides in the atmosphere, and traveling ionospheric disturbances, cannot explain the observed periodic enhancements of the ionospheric ion density. We suggest that the magnetosphere‐ionospheric‐thermospheric system may have an intrinsic period of ∼6 hr and that oscillations of the magnetosphere‐ionospheric‐thermospheric system with this period can be excited during intense magnetic storms, although the mechanisms for the generation of the long‐periodic oscillations are not understood.

 
more » « less
Award ID(s):
2120511
NSF-PAR ID:
10398829
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
1
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We have used measurements of the Defense Meteorological Satellite Program (DMSP) satellites to study variations of electron temperature in the subauroral ionosphere during the magnetic storm on 17–25 March 2015. This magnetic storm had a long recovery phase of 7 days, and the ionospheric behavior over the entire storm time was seldom investigated. In this study, we find that the electron temperature at subauroral latitudes was continuously enhanced for 8 days, from the storm onset to the end of the recovery phase. The maximum electron temperature during the storm times was 1000–4000 K higher than the maximum electron temperature during quiet times. This long‐lasting enhancement of subauroral electron temperature was attributed to energy transfer among the solar wind, magnetosphere, ring current, plasmasphere, and ionosphere driven by high‐speed solar wind streams and fluctuating interplanetary magnetic field during the entire 8‐day period of the storm. The electron temperature enhancements were quite symmetric in the post‐midnight sector but became strongly asymmetric near dawn between the southern and northern hemispheres. The asymmetric enhancements of electron temperature near dawn may be related to the magnetic declination and the daytime midlatitude trough in the southern hemisphere. Large daily variations of maximum electron temperature in the post‐midnight sector were observed and may be related to the offset between geomagnetic and geographic latitudes. These DMSP observations provide new insight on ionospheric response to intense magnetic storms.

     
    more » « less
  2. Abstract

    We identified a few new storm‐time ionospheric phenomena by analyzing disturbances in topside ion density, electron temperature, and ion temperature at ∼840 km altitude measured by theDefense Meteorological Satellite Programsatellites during the 20 November 2003 magnetic storm. The storm‐time ion density enhancements showed different features at different local times. Longitudinal structures in the enhanced ion density occurred in the morning sector and extended from equatorial regions to middle latitudes. Ion density increase due to enhanced fountain effect was observed in the evening sector and lasted for ∼18 hr. A positive ionospheric storm occurred during the late recovery phase of the storm and was associated with increased atomic oxygen to molecular nitrogen column density ratio. Electron temperature at subauroral latitudes reached 8000 K during the storm, ∼4000 K higher than the quiet‐time temperature. The subauroral temperature enhancement lasted for 2–3 days. Simultaneous enhancements in the ion density, electron temperature, and ion temperature from subauroral to equatorial latitudes occurred in the night‐time ionosphere and lasted for ∼18 hr. A negative correlation between ion density and electron/ion temperature variations occurred in the dusk sector for ∼12 hr. An enhanced ion temperature crest in the winter hemisphere during the magnetic storm lasted for 2 days. A decrease in the ion temperature crest was also observed with an increase of the ion density. These new features in the ionospheric density and temperature, together with the results from previous studies, provide a more comprehensive scenario of the ionospheric response to the superstorm.

     
    more » « less
  3. Abstract

    This study provides first storm time observations of the westward‐propagating medium‐scale traveling ionospheric disturbances (MSTIDs), particularly, associated with characteristic subauroral storm time features, storm‐enhanced density (SED), subauroral polarization stream (SAPS), and enhanced thermospheric westward winds over the continental US. In the four recent (2017–2019) geomagnetic storm cases examined in this study (i.e., 2018‐08‐25/26, 2017‐09‐07/08, 2017‐05‐27/28, and 2016‐02‐02/03 with minimum SYM‐H index −206, −146, −142, and −58 nT, respectively), MSTIDs were observed from dusk‐to‐midnight local times predominately during the intervals of interplanetary magnetic field (IMF) Bz stably southward. Multiple wavefronts of the TIDs were elongated NW‐SE, 2°–3° longitude apart, and southwestward propagated at a range of zonal phase speeds between 100 and 300 m/s. These TIDs initiated in the northeastern US and intensified or developed in the central US with either the coincident SED structure (especially the SED basis region) or concurrent small electron density patches adjacent to the SED. Observations also indicate coincident intense storm time electric fields associated with the magnetosphere–ionosphere–thermosphere coupling electrodynamics at subauroral latitudes (such as SAPS) as well as enhanced thermospheric westward winds. We speculate that these electric fields trigger plasma instability (with large growth rates) and MSTIDs. These electrified MSTIDs propagated westward along with the background westward ion flow which resulted from the disturbance westward wind dynamo and/or SAPS.

     
    more » « less
  4. Abstract

    We analyze horizontal plasma drifts measured by the Defense Meteorological Satellite Program satellites during two intense magnetic storms. It is found, for the first time, that westward plasma flows associated with subauroral polarization streams (SAPS) in the dusk‐evening sector penetrate continuously to equatorial latitudes. The westward ion drifts between subauroral and equatorial latitudes occur nearly simultaneously. The latitudinal profile of the westward ion drifts at low latitudes (approximately within ±30° magnetic latitude [MLat]) is relatively flat, and the westward ion drifts at the magnetic equator reach 200–300 m s−1. In the dawn‐morning sector, eastward ion drifts at subauroral latitudes are also SAPS. The storm‐time dawnside auroral boundary moves to ∼±55° MLat, and the dawnside SAPS penetrate to ∼±20° MLat at 0930 local time. A dawnside SAPS flow channel appears to exist, although it is not as well defined as the duskside SAPS flow channel. Thermospheric wind data measured by the Challenging Minisatellite Payload satellite are analyzed, and zonal disturbance winds are derived. Disturbance winds can reach equatorial latitudes rapidly near midnight but are limited to ±40° geographic latitude or higher near noon. The effects of disturbance winds on the zonal ion drifts at middle and low latitudes are discussed. It is suggested that both the westward ion drifts at middle and low latitudes in the dusk‐evening sector and the eastward ion drifts at middle and lower latitudes in the dawn‐morning sector are caused primarily by penetration of the SAPS and auroral electric fields.

     
    more » « less
  5. Abstract

    The occurrence of St. Patrick's Day (17 March) geomagnetic storms during two different years (2013 and 2015) with similar solar flux levels but varying storm intensity provided an opportunity to compare and contrast the responses of the ionosphere‐thermosphere (IT) system to different levels of geomagnetic activity. The evolution of positive ionospheric storms at the southern polar stations Bharati (76.6°S MLAT) and Davis (76.2°S MLAT) and its causative connection to the solar wind driving mechanisms during these storms has been investigated in this paper. During the main phase of both the storms, significant enhancements in TEC and phase scintillation were observed in the magnetic noon/ midnight period at Bharati and Davis. The TEC in the midnight sector on 17 March 2015 was significantly higher compared to that on 17 March 2013, in line with the storm intensity. The TEC enhancements during both the storm events are associated with the formation of the storm‐enhanced densities (SEDs)/tongue of ionization (TOI). The strong and sustained magnetopause erosion led to the prevalence of stronger storm time electric fields (prompt penetration electric field (PPEF)/subauroral polarization streams (SAPS)) for long duration on 17 March 2015. This combined with the action of neutral winds at midlatitudes favored the formation of higher plasma densities in the regions of SED formation on this day. The same was weaker during the 17 March 2013 storm due to the fast fluctuating nature of interplanetary magnetic field (IMF)Bz. This study shows that the duration and extent of magnetopause erosion play an important role in the spatiotemporal evolution of the plasma density distribution in the high‐midlatitude ionosphere.

     
    more » « less