skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contrasting environmental factors drive local adaptation at opposite ends of an environmental gradient in the yellow monkeyflower ( Mimulus guttatus )
PremiseIdentifying the environmental factors responsible for natural selection across different habitats is crucial for understanding the process of local adaptation in plants. Despite its importance, few studies have successfully isolated the environmental factors driving local adaptation in nature. In this study, we evaluated the agents of selection responsible for local adaptation of the monkeyflowerMimulus guttatusto California's coastal and inland habitats. MethodsWe implemented a manipulative reciprocal transplant experiment at coastal and inland sites, where we excluded aboveground stressors in an effort to elucidate their role in the evolution of local adaptation. ResultsExcluding aboveground stressors, most likely a combination of salt spray and herbivory, completely rescued inland annual plant fitness when transplanted to coastal habitat. The exclosures in inland habitat provided a benefit to the performance of coastal perennial plants. However, the exclosures are unlikely to provide much fitness benefit to the coastal plants at the inland site because of their general inability to flower in time to escape from the summer drought. ConclusionsOur study demonstrates that a distinct set of selective agents (aboveground vs. belowground) are responsible for local adaptation at opposite ends of an environmental gradient.  more » « less
Award ID(s):
1855927
PAR ID:
10373473
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
107
Issue:
2
ISSN:
0002-9122
Format(s):
Medium: X Size: p. 298-307
Size(s):
p. 298-307
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate‐driven ecosystem shifts occur through turnover in the foundation species which structure the landscape. Therefore, to predict the fate of areas undergoing climate‐driven ecosystem shifts, one approach is to characterize ecological and evolutionary responses of foundation species along dynamic environmental gradients. One such gradient is the ecotone between tidal marshes and maritime forests in coastal areas of the US Mid‐Atlantic region where accelerated sea‐level rise and coastal storms of increased frequency and intensity are driving forest dieback and inland marsh migration. Mid‐Atlantic tidal marshes are structured by marsh grasses which act as foundation species, and these grasses exhibit trait variation across their distribution from established marsh interior to their inland migration front. We conducted a reciprocal transplant experiment withSpartina patens, a dominant high marsh grass and foundation species, between established populations in the high marsh and range edge populations in the forest understory at three Mid‐Atlantic sites. We monitored environmental conditions in marsh and forest understory habitats, measured plant traits (above‐ and belowground biomass, specific leaf area, leaf N and C concentrations) in transplanted and reference non‐transplanted individuals, and used microsatellite markers to determine the genetic identity of transplants to quantify clonality between habitats and sites. Individuals transplanted into the forest understory exhibited a plastic shift in resource allocation to aboveground structures associated with light acquisition, with shifts in transplants making them more morphologically similar to reference individuals sampled from the forest habitat. Clonal diversity and genetic distance among transplants were relatively high at two of three sites, but individuals at all sites exhibited trans‐habitat plasticity regardless of clonal diversity or a lack thereof. Individuals grown in the forest understory showed lower vegetative and reproductive fitness. Nevertheless, the trait plasticity exhibited by this species allowed individuals from the forest that were transplanted into the marsh to recoup significant biomass in only a single growing season. We predict high plasticity will facilitate the persistence of colonizingS. patensindividuals under suboptimal forest shade conditions until forest dieback increases light availability, ultimately promoting continued inland migration of this foundation species under sea‐level rise. 
    more » « less
  2. Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant–common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant. 
    more » « less
  3. Abstract PremiseA key goal of evolutionary biologists is to understand how and why genetic variation is partitioned within species. In the yellow monkeyflower,Mimulus guttatus(syn.Erythranthe guttata), coastal perennial populations constitute a single genetically and morphologically differentiated ecotype compared to inlandM. guttatuspopulations. While the coastal ecotype's distinctiveness has now been well documented, there is also environmental variation across the ecotype's range that could drive more continuous differentiation among its component populations. MethodsBased on previous observations of a potential cline within this ecotype, we quantified plant height, among other traits, across coastal perennial accessions from 74 populations in a greenhouse common garden experiment. To evaluate potential drivers of the relationship between trait variation and latitude, we regressed height against multiple climatic factors, including temperature, precipitation, and coastal wind speeds. We also accounted for exposure to the open ocean in all analyses. ResultsMultiple traits were correlated with latitude of origin, but none more than plant height. Height was negatively correlated with latitude, and plants directly exposed to the open ocean were shorter than those protected from coastal winds. Further analyses revealed that height was correlated with climatic factors (precipitation, temperature, and wind speeds) that were autocorrelated with latitude. We hypothesize that one or more of these climatic factors drove the evolution of latitudinal clinal variation within the coastal ecotype. ConclusionsOverall, our study illustrates the complexity of how the distribution of environmental variation can simultaneously drive the evolution of both distinct ecotypesandcontinuous clines within those ecotypes. 
    more » « less
  4. Abstract PremiseThe adaptive significance of amphistomy (stomata on both upper and lower leaf surfaces) is unresolved. A widespread association between amphistomy and open, sunny habitats suggests the adaptive benefit of amphistomy may be greatest in these contexts, but this hypothesis has not been tested experimentally. Understanding amphistomy informs its potential as a target for crop improvement and paleoenvironment reconstruction. MethodsWe developed a method to quantify “amphistomy advantage” () as the log‐ratio of photosynthesis in an amphistomatous leaf to that of the same leaf but with gas exchange blocked through the upper surface (pseudohypostomy). Humidity modulated stomatal conductance and thus enabled comparing photosynthesis at the same total stomatal conductance. We estimated and leaf traits in six coastal (open, sunny) and six montane (closed, shaded) populations of the indigenous Hawaiian species ʻilima (Sida fallax). ResultsCoastal ʻilima leaves benefit 4.04 times more from amphistomy than montane leaves. Evidence was equivocal with respect to two hypotheses: (1) that coastal leaves benefit more because they are thicker and have lower CO2conductance through the internal airspace and (2) that they benefit more because they have similar conductance on each surface, as opposed to most conductance being through the lower surface. ConclusionsThis is the first direct experimental evidence that amphistomy increases photosynthesis, consistent with the hypothesis that parallel pathways through upper and lower mesophyll increase CO2supply to chloroplasts. The prevalence of amphistomatous leaves in open, sunny habitats can partially be explained by the increased benefit of amphistomy in “sun” leaves, but the mechanistic basis remains uncertain. 
    more » « less
  5. Abstract Although chemical defenses and herbivore pressure are widely established as key targets and agents of selection, their roles in local adaptation and determining potential evolutionary responses to changing climates are often neglected. Here, we explore fitness differences between 11 rangewide M. guttatus populations in a field common garden experiment and assess the agents and targets of selection driving relative fitness patterns. We use piecewise structural equation models to disentangle associations between chemical defenses, (phenylpropanoid glycosides; PPGs), and life history traits with herbivory and fitness. While the historical environment of populations is not predictive of fitness differences between populations, >90% of variation in fitness can be predicted by the flowering time and foliar PPG defense arsenal of a population. Piecewise structural equation models indicate that life history traits, particularly earlier flowering time, are strongly and directly linked to fitness. However, herbivory, particularly fruit predation, is also an important agent of selection that creates indirect links between fitness and both chemical defenses and life history traits. Our results emphasize the multivariate nature of the agents and targets of selections in producing adaptation and suggest that future responses to selection must navigate a complex fitness landscape. 
    more » « less