skip to main content


Title: Contrasting environmental factors drive local adaptation at opposite ends of an environmental gradient in the yellow monkeyflower ( Mimulus guttatus )
Premise

Identifying the environmental factors responsible for natural selection across different habitats is crucial for understanding the process of local adaptation in plants. Despite its importance, few studies have successfully isolated the environmental factors driving local adaptation in nature. In this study, we evaluated the agents of selection responsible for local adaptation of the monkeyflowerMimulus guttatusto California's coastal and inland habitats.

Methods

We implemented a manipulative reciprocal transplant experiment at coastal and inland sites, where we excluded aboveground stressors in an effort to elucidate their role in the evolution of local adaptation.

Results

Excluding aboveground stressors, most likely a combination of salt spray and herbivory, completely rescued inland annual plant fitness when transplanted to coastal habitat. The exclosures in inland habitat provided a benefit to the performance of coastal perennial plants. However, the exclosures are unlikely to provide much fitness benefit to the coastal plants at the inland site because of their general inability to flower in time to escape from the summer drought.

Conclusions

Our study demonstrates that a distinct set of selective agents (aboveground vs. belowground) are responsible for local adaptation at opposite ends of an environmental gradient.

 
more » « less
Award ID(s):
1855927
NSF-PAR ID:
10373473
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
107
Issue:
2
ISSN:
0002-9122
Page Range / eLocation ID:
p. 298-307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The timing of life history events in many plants and animals depends on the seasonal fluctuations of specific environmental conditions. Climate change is altering environmental regimes and disrupting natural cycles and patterns across communities. Anadromous fishes that migrate between marine and freshwater habitats to spawn are particularly sensitive to shifting environmental conditions and thus are vulnerable to the effects of climate change. However, for many anadromous fish species the specific environmental mechanisms driving migration and spawning patterns are not well understood. In this study, we investigated the upstream spawning migrations of river herringAlosaspp. in 12 coastal Massachusetts streams. By analyzing long‐term data sets (8–28 years) of daily fish counts, we determined the local influence of environmental factors on daily migration patterns and compared seasonal run dynamics and environmental regimes among streams. Our results suggest that water temperature was the most consistent predictor of both daily river herring presence–absence and abundance during migration. We found inconsistent effects of streamflow and lunar phase, likely due to the anthropogenic manipulation of flow and connectivity in different systems. Geographic patterns in run dynamics and thermal regimes suggest that the more northerly runs in this region are relatively vulnerable to climate change due to migration occurring later in the spring season, at warmer water temperatures that approach thermal maxima, and during a narrower temporal window compared to southern runs. The phenology of river herring and their reliance on seasonal temperature patterns indicate that populations of these species may benefit from management practices that reduce within‐stream anthropogenic water temperature manipulations and maintain coolwater thermal refugia.

     
    more » « less
  2. Abstract Aim

    The endophyteEpichloë alsodes, with known insecticidal properties, is found in a majority ofPoa alsodespopulations across a latitudinal gradient from North Carolina to New York. A second endophyte,E. schardliivar.pennsylvanica, with known insect‐deterring effects, is limited to a few populations in Pennsylvania. We explored whether such disparate differences in distributions could be explained by selection from biotic and abiotic environmental factors.

    Location

    Along the Appalachian Mountains from North Carolina to New York, USA.

    Taxon

    Fungi.

    Methods

    Studied correlations of infection frequencies with abiotic and biotic environmental factors. Checked endophyte vertical transmission rates and effects on overwintering survival. With artificial inoculations for two host populations with two isolates per endophyte species, tested endophyte–host compatibility. Studied effects of isolates on host performances in greenhouse experiment with four water‐nutrients treatments.

    Results

    Correlation analysis revealed positive associations ofE. alsodesfrequency with July Max temperatures, July precipitation, and soil nitrogen and phosphorous and negative associations with insect damage and soil magnesium and potassium. Plants infected withE. alsodeshad increased overwintering survival compared to plants infected withE. schardliior uninfected (E−) plants. Artificial inoculations indicated thatE. alsodeshad better compatibility with a variety of host genotypes than didE. schardlii. The experiment with reciprocally inoculated plants grown under different treatments revealed a complexity of interactions among hosts, endophyte species, isolate within species, host plant origin, and environmental factors. Neither of the endophyte species increased plant biomass, but some of the isolates within each species had other effects on plant growth such as increased root:shoot ratio, number of tillers, and changes in plant height that might affect host fitness.

    Main conclusion

    In the absence of clear and consistent effects of the endophytes on host growth, the differences in endophyte‐mediated protection against herbivores may be the key factor determining distribution differences of the two endophyte species.

     
    more » « less
  3. Abstract Context

    Processes that shape genomic and ecological divergence can reveal important evolutionary dynamics to inform the conservation of threatened species.Fontaineais a genus of rainforest shrubs and small trees including critically endangered and threatened species restricted to narrow, but complex geographic and ecological regions. Several species ofFontaineaare subject to spatially explicit conditions and experience limited intra-specific gene flow, likely generating genetic differentiation and local adaptation.

    Objectives

    Here, we explored the genetic and ecological mechanisms underlying patterns of diversification in two, closely related threatenedFontaineaspecies. Our aim was to compare spatial patterns of genetic variation between the vulnerableFontainea australis(Southern Fontainea) and critically endangeredF. oraria(Coastal Fontainea), endemic to the heterogeneous subtropical region of central, eastern Australia, where large-scale clearing has severely reduced rainforest habitat to a fraction (< 1%) of its pre-European settlement extent.

    Methods

    We used a set of 10,000 reduced-representation markers to infer genetic relationships and the drivers of spatial genetic variation across the two species. In addition, we employed a combination of univariate and multivariate genome-environment association analysis using a set of topo-climatic variables to explore potential patterns of local adaptation as a factor impacting genomic divergence.

    Results

    Our study revealed that Coastal Fontainea have a close genetic relationship with Southern Fontainea. We showed that isolation by distance has played a key role in their genetic variation, indicating that vicariance can explain the spatial genetic distribution of the two species. Genotype-environment analyses showed a strong association with temperature and topographic features, suggesting adaptation to localised thermal environments. We used a multivariate redundancy analysis to identify a range of putatively adapted loci associated with local environmental conditions.

    Conclusions

    Divergent selection at the local-habitat scale as a result of dispersal limitations and environmental heterogeneity (including physical barriers) are likely contributors to adaptive divergence between the twoFontaineaspecies. Our findings have presented evidence to indicate that Southern and Coastal Fontainea were comprised of distinct genetic groups and ecotypes, that together may form a single species continuum, with further phenotype research suggested to confirm the current species boundaries. Proactive conservation actions, including assisted migration to enhance the resilience of populations lacking stress-tolerant single nucleotide polymorphisms (SNPs) may be required to secure the long-term future of both taxa. This is especially vital for the critically endangered Coastal Fontainea given projections of habitat decline for the species under future climate scenarios.

     
    more » « less
  4. Abstract

    Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next‐generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species is ecologically important to easternUSforests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental–functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases ofGBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental–functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluatedFstper locus while accounting for genetic differentiation between coastal subpopulations and Piedmont‐Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–BayeScanFstoutliers. ForLFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment‐driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.

     
    more » « less
  5. Abstract

    Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.

     
    more » « less