Abstract Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF‐based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF‐based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF‐based electrocatalysts.
more »
« less
Enhanced Crystallinity of Covalent Organic Frameworks Formed Under Physical Confinement by Exfoliated Graphene
Abstract The polymerization of 1,4‐benzenediboronic acid (BDBA) on mica to form a covalent organic framework (COF‐1) reveals a dramatic increase in crystallinity when physically confined by exfoliated graphene. COF‐1 domains formed under graphene confinement are highly geometric in shape and on the order of square micrometers in size, while outside of the exfoliated flakes, the COF‐1 does not exhibit long‐range mesoscale structural order, according to atomic force microscopy imaging. Micro‐Fourier transform infrared spectroscopy confirms the presence of COF‐1 both outside and underneath the exfoliated graphene flakes, and density functional theory calculations predict that higher mobility and self‐assembly are not causes of this higher degree of crystallinity for the confined COF‐1 domains. The most likely origin of the confined COF‐1's substantial increase in crystallinity is from enhanced dynamic covalent crystallization due to the water confined beneath the graphene flake.
more »
« less
- PAR ID:
- 10373564
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 46
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The first synthesis and comprehensive characterization of two vinyl tetrazine‐linked covalent organic frameworks (COF), TA‐COF‐1 and TA‐COF‐2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2g−1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light‐driven applications. These advantages enable TA‐COFs to act as reusable metal‐free photocatalysts in the arylboronic acids oxidation and light‐induced coupling of benzylamines. In addition, these TA‐COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3vapor. Further, the TA‐COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA‐COFs can also degrade 5‐nitro‐1,2,4‐triazol‐3‐one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight‐driven photocatalytic process; thus, revealing dual functionality of the protonated TA‐COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF‐based materials, facilitating advances in catalysis, sensing, and other related fields.more » « less
-
We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer.more » « less
-
Abstract Tuning the topology of two‐dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site‐selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine‐functionalized dihydrazide monomer (NH2−Ah) and 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover‐like 2D COF with free amine groups (NH2−Ah−Tz) and a honeycomb‐like COF without amine groups (Ah−Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover‐shaped NH2−Ah−Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non‐functionalized honeycomb‐like Ah−Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site‐selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.more » « less
-
Abstract Since the first isolation of graphene, the importance of van der Waals (vdW) interactions has become increasingly recognized in the burgeoning field of layered materials. In this work, infrared nanoimaging techniques and theoretical modeling are used to unravel the critical role played by interfacial vdW interactions in governing the stability of violet phosphorus (VP)—a recently rediscovered wide bandgap p‐type semiconductor—when exfoliated on different substrates. It is demonstrated that vdW interactions with the underlying substrate can have a profound influence on the stability of exfoliated VP flakes and investigate how these interactions are affected by flake thickness, substrate properties (e.g., substrate hydrophilicity, surface roughness), and the exfoliation process. These findings highlight the key role played by interfacial vdW interactions in governing the stability and physical properties of layered materials, and can be used to guide substrate selection in the preparation and study of this important class of materials.more » « less
An official website of the United States government
