skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strain engineering in 2D hBN and graphene with evaporated thin film stressors
We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer.  more » « less
Award ID(s):
1942815 1936250 1719875
PAR ID:
10447061
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
4
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a method of engineering a reversible change in interlayer bonding between layers of exfoliated thin films of MoS2 by means of hydrogen intercalation through forming gas annealing. Interlayer bonding strength is probed through the behavior of MoS2 under process-induced strain engineering, where two-dimensional (2D) flakes are encapsulated with a deposited stressed thin film layer to transfer strain into the underlying 2D materials. It is shown that after forming gas annealing, the depth of the strain transferred into multilayer MoS2 is enhanced as determined through layer-thickness-dependent Raman spectroscopic mapping. This change represents a transition from a 2D van der Waals-bonded material in the as-exfoliated samples to a more three-dimensional (3D)-bonded system in the annealed samples. We demonstrate the reversibility of this effect by means of vacuum annealing of previously forming gas annealed samples. The process of forming gas annealing itself also imparts strain into MoS2 due to a combination of 2D-to-3D bonding transition with differential thermal mismatch between the MoS2 and the substrate. These strains are shown to be retained after the vacuum annealing process, despite the transition back to 2D bonding. Since forming gas annealing is a common technical process in engineering 2D electronic devices, these results represent an important consideration in understanding non-intentionally applied strains due to changes in the mechanical properties of 2D materials. 
    more » « less
  2. In the Raman probing of multilayer thin film materials, the intensity of the measured Raman scattered light will be impacted by the thickness of the thin film layers. The Raman signal intensity will vary non-monotonically with thickness due to interference from the multiple reflections of both the incident laser light and the Raman scattered light of thin film interfaces. Here, a method for calculating the Raman signal intensity from a multilayer thin film system based on the transfer matrix method with a rigorous treatment of the Raman signal generation (discontinuity) is presented. This calculation methodology is valid for any thin film stack with an arbitrary number of layers with arbitrary thicknesses. This approach is applied to several thin film material systems, including silicon-on-sapphire thin films, graphene on Si with a SiO2capping layer, and multilayer MoS2with the presence of a gap between layers and substrate. Different applications where this method can be used in the Raman probing of thin film material properties are discussed. 
    more » « less
  3. We report deterministic control over a moiré superlattice interference pattern in twisted bilayer graphene by implementing designable device-level heterostrain with process-induced strain engineering, a widely used technique in industrial silicon nanofabrication processes. By depositing stressed thin films onto our twisted bilayer graphene samples, heterostrain magnitude and strain directionality can be controlled by stressor film force (film stress × film thickness) and patterned stressor geometry, respectively. We examine strain and moiré interference with Raman spectroscopy through in-plane and moiré-activated phonon mode shifts. Results support systematic C 3 rotational symmetry breaking and tunable periodicity in moiré superlattices under the application of uniaxial or biaxial heterostrain. Experimental results are validated by molecular statics simulations and density functional theory based first principles calculations. This provides a method not only to tune moiré interference without additional twisting but also to allow for a systematic pathway to explore different van der Waals based moiré superlattice symmetries by deterministic design. 
    more » « less
  4. Abstract Atomically thin transition metal dichalcogenides (TMDs), like MoS 2 with high carrier mobilities and tunable electron dispersions, are unique active material candidates for next generation opto-electronic devices. Previous studies on ion irradiation show great potential applications when applied to two-dimensional (2D) materials, yet have been limited to micron size exfoliated flakes or smaller. To demonstrate the scalability of this method for industrial applications, we report the application of relatively low power (50 keV) 4 He + ion irradiation towards tuning the optoelectronic properties of an epitaxially grown continuous film of MoS 2 at the wafer scale, and demonstrate that precise manipulation of atomistic defects can be achieved in TMD films using ion implanters. The effect of 4 He + ion fluence on the PL and Raman signatures of the irradiated film provides new insights into the type and concentration of defects formed in the MoS 2 lattice, which are quantified through ion beam analysis. PL and Raman spectroscopy indicate that point defects are generated without causing disruption to the underlying lattice structure of the 2D films and hence, this technique can prove to be an effective way to achieve defect-mediated control over the opto-electronic properties of MoS 2 and other 2D materials. 
    more » « less
  5. Two-dimensional (2D) molybdenum ditelluride (MoTe 2 ) is an interesting material for fundamental study and applications, due to its ability to exist in different polymorphs of 2H, 1T, and 1T′, their phase change behavior, and unique electronic properties. Although much progress has been made in the growth of high-quality flakes and films of 2H and 1T′-MoTe 2 phases, phase-selective growth of all three phases remains a huge challenge, due to the lack of enough information on their growth mechanism. Herein, we present a novel approach to growing films and geometrical-shaped few-layer flakes of 2D 2H-, 1T-, and 1T′-MoTe 2 by atmospheric-pressure chemical vapor deposition (APCVD) and present a thorough understanding of the phase-selective growth mechanism by employing the concept of thermodynamics and chemical kinetics involved in the growth processes. Our approach involves optimization of growth parameters and understanding using thermodynamical software, HSC Chemistry. A lattice strain-mediated mechanism has been proposed to explain the phase selective growth of 2D MoTe 2 , and different chemical kinetics-guided strategies have been developed to grow MoTe 2 flakes and films. 
    more » « less