skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Adaptive control for reliable cooperative intersection crossing of connected autonomous vehicles
Abstract

Rapid advances in vehicle automation and communication technologies enable connected autonomous vehicles (CAVs) to cross intersections cooperatively, which could significantly improve traffic throughput and safety at intersections. Virtual platooning, designed upon car‐following behavior, is one of the promising control methods to promote cooperative intersection crossing of CAVs. Nevertheless, demand variation raises safety and stability concerns when CAVs adopt a virtual platooning control approach. Along this line, this study proposes an adaptive vehicle control method to facilitate the formation of a virtual platoon and the cooperative crossing of CAVs, factoring demand variations at an isolated intersection. This study derives the stability conditions of virtual CAV platoons depending on the time‐varying traffic demand. Based on the derived stability conditions, an optimization model is proposed to adaptively control CAVs dynamics by balancing approaching traffic mobility and safety to enhance the reliability of cooperative crossing at intersections. The simulation results show that, compared to the nonadaptive control, our proposed method can increase the intersection throughput by 18.2%. Also, time‐to‐collision results highlight the advantages of the proposed adaptive control in securing traffic safety.

 
more » « less
Award ID(s):
2047793
NSF-PAR ID:
10373588
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Mechanical System Dynamics
Volume:
2
Issue:
3
ISSN:
2767-1399
Format(s):
Medium: X Size: p. 278-289
Size(s):
p. 278-289
Sponsoring Org:
National Science Foundation
More Like this
  1. The safety impacts of cooperative platooning in mixed traffic consisting of human-driven, con-nected, and connected-automated vehicles were evaluated. The cooperative platooning in mixed traffic control algorithm evaluated is the Cooperative Adaptive Cruise Control with unconnected Vehicle (CACCu) with an unconnected vehicle. Its safety and string stability were evaluated using a high-fidelity simulation based on real-world vehicle trajectories. An Adaptive Cruise Control (ACC) algorithm was selected for comparison purposes. The results indicate that the cooperative platooning in mixed traffic control algorithm (CACCu) maintains string stability and performs more safely than the ACC. 
    more » « less
  2. In this paper, we showcase a framework for cooperative mixed traffic platooning that allows the platooning vehicles to realize multiple benefits from using vehicle-to- everything (V2X) communications and advanced controls on urban arterial roads. A mixed traffic platoon, in general, can be formulated by a lead and ego connected automated vehicles (CAVs) with one or more unconnected human-driven vehicles (UHVs) in between. As this platoon approaches an intersection, the lead vehicle uses signal phase and timing (SPaT) messages from the connected intersection to optimize its trajectory for travel time and energy efficiency as it passes through the intersection. These benefits carry over to the UHVs and the ego vehicle as they follow the lead vehicle. The ego vehicle then uses information from the lead vehicle received through basic safety messages (BSMs) to further optimize its safety, driving comfort, and energy consumption. This is accomplished by the recently designed cooperative adaptive cruise control with unconnected vehicles (CACCu). The performance benefits of our framework are proven and demonstrated by simulations using real-world platooning data from the CACC Field Operation Test (FOT) Dataset from the Netherlands. 
    more » « less
  3. Motivated by connected and automated vehicle (CAV) technologies, this paper proposes a data-driven optimization-based Model Predictive Control (MPC) modeling framework for the Cooperative Adaptive Cruise Control (CACC) of a string of CAVs under uncertain traffic conditions. The proposed data-driven optimization-based MPC modeling framework aims to improve the stability, robustness, and safety of longitudinal cooperative automated driving involving a string of CAVs under uncertain traffic conditions using Vehicle-to-Vehicle (V2V) data. Based on an online learning-based driving dynamics prediction model, we predict the uncertain driving states of the vehicles preceding the controlled CAVs. With the predicted driving states of the preceding vehicles, we solve a constrained Finite-Horizon Optimal Control problem to predict the uncertain driving states of the controlled CAVs. To obtain the optimal acceleration or deceleration commands for the CAVs under uncertainties, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e. a special case of data-driven optimization models under moment bounds) with a Distributionally Robust Chance Constraint (DRCC). The predicted uncertain driving states of the immediately preceding vehicles and the controlled CAVs will be utilized in the safety constraint and the reference driving states of the DRSO-DRCC model. To solve the minimax program of the DRSO-DRCC model, we reformulate the relaxed dual problem as a Semidefinite Program (SDP) of the original DRSO-DRCC model based on the strong duality theory and the Semidefinite Relaxation technique. In addition, we propose two methods for solving the relaxed SDP problem. We use Next Generation Simulation (NGSIM) data to demonstrate the proposed model in numerical experiments. The experimental results and analyses demonstrate that the proposed model can obtain string-stable, robust, and safe longitudinal cooperative automated driving control of CAVs by proper settings, including the driving-dynamics prediction model, prediction horizon lengths, and time headways. Computational analyses are conducted to validate the efficiency of the proposed methods for solving the DRSO-DRCC model for real-time automated driving applications within proper settings. 
    more » « less
  4. Connected and automated vehicle (CAV) technology is providing urban transportation managers tremendous opportunities for better operation of urban mobility systems. However, there are significant challenges in real-time implementation as the computational time of the corresponding operations optimization model increases exponentially with increasing vehicle numbers. Following the companion paper (Chen et al. 2021), which proposes a novel automated traffic control scheme for isolated intersections, this study proposes a network-level, real-time traffic control framework for CAVs on grid networks. The proposed framework integrates a rhythmic control method with an online routing algorithm to realize collision-free control of all CAVs on a network and achieve superior performance in average vehicle delay, network traffic throughput, and computational scalability. Specifically, we construct a preset network rhythm that all CAVs can follow to move on the network and avoid collisions at all intersections. Based on the network rhythm, we then formulate online routing for the CAVs as a mixed integer linear program, which optimizes the entry times of CAVs at all entrances of the network and their time–space routings in real time. We provide a sufficient condition that the linear programming relaxation of the online routing model yields an optimal integer solution. Extensive numerical tests are conducted to show the performance of the proposed operations management framework under various scenarios. It is illustrated that the framework is capable of achieving negligible delays and increased network throughput. Furthermore, the computational time results are also promising. The CPU time for solving a collision-free control optimization problem with 2,000 vehicles is only 0.3 second on an ordinary personal computer. 
    more » « less
  5. Connected automated vehicles (CAVs), built upon advanced vehicle control and communication technology, can improve traffic throughput, safety, and energy efficiency. Previous studies on CAVs control focus on instability and stability properties of CAV platoons; however, these analyses cannot reveal the damping platoon oscillation characteristics, which are important for enhancing CAV platoon reliability against variant continuous perturbations. To this end, this research seeks to characterize the damping oscillations of CAVs through exploiting the platoon's unforced oscillatory, i.e., damping behavior. Inspired by the mechanical vibration theory, the proposed approach is applied to a CAV platoon with linear car-following control formulated as Helly's model and the predecessor-following communication topology. The proposed approach is applied to a CAV platoon with the linear car-following control formulated as Helly's model and the predecessor-following communication topology. Numerical analysis results show that a periodic perturbation with the resonance frequency of the CAV platoon will amplify the oscillation and lead to the severest oscillatory traffic. Our analysis highlights the importance of preventing platoon oscillations from resonance in ensuring CAV platooning reliability. 
    more » « less