Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Based on the vertical Total Electron Content (TEC) data observed by the Global Navigation Satellite System in the northern hemisphere, a large area of low plasma density during summer at high latitudes, termed decreased TEC region, was investigated statistically between 2014 and 2024. Compared with the classical depleted structures that usually occur in the nighttime F region at high latitudes during winter, decreased TEC region is usually found in the sunlit polar cap ionosphere during summer. The decreased TEC region is predominantly located in regions above 70° magnetic latitude for moderate and high solar activity. The lower‐TEC region is biased towards the dawn and midnight sectors. Along the 18:25–06:25 Magnetic Local Time meridian, the depth of the decreased TEC region reached 7.6TECu in 2014. The decreased TEC region is deeper for higher Kp (Kp > 2) than for low Kp (Kp ≤ 2).more » « lessFree, publicly-accessible full text available April 28, 2026
- 
            Abstract Anthropogenic greenhouse gas emissions significantly impact the middle and upper atmosphere. They cause cooling and thermal shrinking and affect the atmospheric structure. Atmospheric contraction results in changes in key atmospheric features, such as the stratopause height or the peak ionospheric electron density, and also results in reduced thermosphere density. These changes can impact, among others, the lifespan of objects in low Earth orbit, refraction of radio communication and GPS signals, and the peak altitudes of meteoroids entering the Earth's atmosphere. Given this, there is a critical need for observational capabilities to monitor the middle and upper atmosphere. Equally important is the commitment to maintaining and improving long‐term, homogeneous data collection. However, capabilities to observe the middle and upper atmosphere are decreasing rather than improving.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract Observation‐based simulations of the ionosphere were performed with the NRLMSISE‐00 model for six locations around the globe during 1–9 February 2022, which includes the so‐called Starlink Storm. Unlike other studies, we focused on the magnetically quiet days around the storm. Unexpectedly, the observed values of the F2‐layer peak density were ∼50% larger than the simulated values. We show that this implies that the daytime O density in the thermosphere was systematically ∼30% larger than the NRLMSISE‐00 predicts. Further investigation shows that this discrepancy is not an exclusive feature of the period around the Starlink Storm and a similar problem happens for some periods for different years. It is unclear if the reason is an actual increase of the O density or its underestimation by the model. Resolving this problem is critical for providing accurate predictions of the atmosphere to avoid the degradation of normal operation or even loss of space assets.more » « lessFree, publicly-accessible full text available January 28, 2026
- 
            Abstract The May 2024 super storm is one of the strongest geomagnetic storms during the past 20 years. One of the most remarkable ionospheric responses to this event over East and Southeast Asia is the complex ionospheric fluctuations following the storm commencement. The fluctuations created multiple oscillations of total electron content (TEC) embedded in the diurnal variation, with amplitudes up to 10 TECu. Along the same latitude, the fluctuations were nearly synchronized over a wide longitude span up to 35°. In the meridional direction, the fluctuations over low latitudes were the most significant and complex, which contained two main components, the poleward extending oscillations originated from the magnetic equator, and the equatorward propagating traveling ionospheric disturbances (TIDs) from high latitudes. The TIDs likely occurred around the globe. The storm‐time interplanetary electric fields penetrating into equatorial latitudes of the ionosphere and the auroral energy input were suggested to drive the poleward extending oscillations and the equatorward TIDs, respectively.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Prior observational uncertainties have hindered the clear understanding of the link between tropospheric Lamb waves and ionospheric disturbances. In this study, we precisely extracted ionospheric Lamb waves originating from the epicenter of the 15 January 2022 Tonga eruption, propagating upward in a conical structure. This was achieved by using line‐of‐sight observations from the BeiDou geostationary satellites, which eliminated the spatiotemporal ambiguity introduced by the relative motion of Global Positioning System satellites, enabling the clear extraction of the Lamb signal in the ionosphere. The observed L0 mode speed (∼323 m/s) and period (∼30 min) were consistent with those of the tropospheric Lamb wave. It suggested that the ionospheric Lamb wave is likely driven by the surface Lamb wave, leading to a conical wave‐front that extends in altitude. This study highlights the significant role of Lamb waves in transmitting energy from epicenters through Earth's atmosphere and plasma systems.more » « less
- 
            Abstract Plasma blob is generally a low‐latitude phenomenon occurring at the poleward edge of equatorial plasma bubble (EPB) during post‐sunset periods. Here we report a case of midlatitude ionospheric plasma blob‐like structures occurring along with super EPBs over East Asia around sunrise during the May 2024 great geomagnetic storm. Interestingly, the blob‐like structures appeared at both the poleward and westward edges of EPBs, reached up to 40°N magnetic latitudes, and migrated westward several thousand kilometers together with the bubble. The total electron content (TEC) inside the blob‐like structures was enhanced by ∼50 TEC units relative to the ambient ionosphere. The blob‐like structure at the EPB poleward edge could be partly linked with field‐aligned plasma accumulation due to poleward development of bubble. For the blob‐like structure at the EPB west side, one possible mechanism is that it was formed and enhanced accompanying the bubble evolution and westward drift.more » « lessFree, publicly-accessible full text available November 16, 2025
- 
            Abstract The extraordinary eruption of the Tonga volcano on 15 January 2022 lofted material to heights exceeding 50 km, marking the highest observed since the satellite era. This eruption caused significant disturbances spanning from the hydrosphere up to the thermosphere. Our recent investigation discovered the dramatic thermospheric responses at satellite altitudes. This study, however, provides physical insights into two main possible processes, secondary gravity waves (GWs) and Lamb waves, which may explain those observed large‐scale thermospheric disturbances. The comparison between the simulations and observations suggests that the MESORAC‐HIAMCM secondary GWs are consistent with GRACE‐FO measured global‐propagation thermospheric density disturbances in timing and amplitude. WACCM‐X simulations suggest that the Lamb wave can reach the thermosphere as a sharp, narrow wave packet, and may contribute about 25% to the total disturbances at 510 km.more » « less
- 
            Abstract The global 3‐dimensional structure of the concentric traveling ionospheric disturbances (CTIDs) triggered by 2022 Tonga volcano was reconstructed by using the 3‐dimensional computerized ionospheric tomography (3DCIT) technique and extensive global navigation satellite system (GNSS) observations. This study provides the first estimation of the CTIDs vertical wavelengths, ∼736 km, which was much larger than the gravity wave (GW) vertical wavelength, 240–400 km, estimated using ICON neutral wind observations. Notable trend with the variation of azimuth was also found in horizontal speeds at 200 and 500 km altitudes and differences between them. These results imply that (a) the global propagation of Lamb waves determined the arrival time of local ionospheric disturbances, and (b) the arriving Lamb waves caused vertical atmospheric perturbations that are not typical of GWs, resulting in local thermospheric horizontal wave propagation which is faster than the Lamb wave propagation at lower altitudes.more » « less
- 
            Abstract This paper conducts a multi‐instrument and data assimilation analysis of the three‐dimensional ionospheric electron density responses to the total solar eclipse on 08 April 2024. The altitude‐resolved electron density variations over the continental US and adjacent regions are analyzed using the Millstone Hill incoherent scatter radar data, ionosonde observations, Swarm in situ measurements, and a novel TEC‐based ionospheric data assimilation system (TIDAS) with SAMI3 model as the background. The principal findings are summarized as follows: (a) The ionospheric hmF2 exhibited a slight enhancement in the initial phase of the eclipse, followed by a distinct reduction of 20–30 km in the recovery phase of the eclipse. The hmF2 in the umbra region showed a post‐eclipse fluctuation, characterized by wavelike perturbations of 10–25 km in magnitude and a period of 30 min. (b) There was a substantial reduction in ionospheric electron density of 20%–50% during the eclipse, with the maximum depletion observed in the F‐region around 200–250 km. The ionospheric electron density variation exhibited a significant altitude‐dependent feature, wherein the response time gradually delayed with increasing altitude. (c) The bottomside ionospheric electron density displayed an immediate reduction after local eclipse began, reaching maximum depletion 5–10 min after the maximum obscuration. In contrast, the topside ionospheric electron density showed a significantly delayed response, with maximum depletion occurring 1–2.5 hr after the peak obscuration.more » « less
- 
            Abstract Local empirical models of the F2 layer peak electron density (NmF2) are developed for 43 low‐ middle latitude ionosonde stations using auto‐scaled data from Lowell GIRO data center and manually scaled data from World Data Center for Ionosphere and Space Weather. Data coverage at these stations ranges from a few years to up to 6 decades. Flare Irradiance Spectral Model index version 2 (FISM2) and ap3 index are used to parametrize the solar extreme ultraviolet (EUV) flux and geomagnetic activity dependence of NmF2. Learning curves suggest that approximately 8 years of data coverage is required to constrain the solar activity dependence of NmF2. Output of local models altogether captures well known anomalies of the F2 ionospheric layer. Performance metrics demonstrate that the model parametrized using FISM2 has better accuracy than a similarly parametrized model with F10.7, as well as than the IRI‐2020 model. Skill score metrics indicate that the FISM2 based model outperforms F10.7 model at all solar activity levels. The improved accuracy of model with FISM2 over F10.7 is due to better representation of solar rotation by FISM2, and due to its performance at solar extremum. Application of singular spectrum analysis to model output reveals that solar rotation contributes to about 2%–3% of the variance in NmF2 data and FISM2 based model, while F10.7 based models overestimate the strength of solar rotation to be at 4%–7%. At solar extremum, both F10.7‐based model and IRI‐2020 tend to overestimate the NmF2 while FISM2 provides the most accurate prediction out of three.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
