Abstract We present Markov Chain Monte Carlo radiative transfer modeling of a joint ALMA 345 GHz and spectral energy distribution data set for a sample of 97 protostellar disks from the VLA and ALMA Nascent Disk and Multiplicity Survey of Orion Protostars. From this modeling, we derive disk and envelope properties for each protostar, allowing us to examine the bulk properties of a population of young protostars. We find that disks are small, with a median dust radius of 29.4 − 2.7 + 4.1 au and a median dust mass of 5.8 − 2.7 + 4.6 M ⊕ . We find no statistically significant difference between most properties of Class 0, Class I, and flat-spectrum sources with the exception of envelope dust mass and inclination. The distinction between inclination is an indication that the Class 0/I/flat-spectrum system may be difficult to tie uniquely to the evolutionary state of protostars. When comparing with Class II disk dust masses in Taurus from similar radiative transfer modeling, we further find that the trend of disk dust mass decreasing from Class 0 to Class II disks is no longer present, though it remains unclear whether such a comparison is fair owing to differences in star-forming region and modeling techniques. Moreover, the disks we model are broadly gravitationally stable. Finally, we compare disk masses and radii with simulations of disk formation and find that magnetohydrodynamical effects may be important for reproducing the observed properties of disks.
more »
« less
Protostellar and Protoplanetary Disk Masses in the Serpens Region
Abstract We present the results from an Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum and12CO (J= 2 − 1) line survey spread over 10 deg2in the Serpens star-forming region of 320 young stellar objects, 302 of which are likely members of Serpens (16 Class I, 35 flat-spectrum, 235 Class II, and 16 Class III). From the continuum data, we derive disk dust masses and show that they systematically decline from Class I to flat-spectrum to Class II sources. Grouped by stellar evolutionary state, the disk mass distributions are similar to other young (<3 Myr) regions, indicating that the large-scale environment of a star-forming region does not strongly affect its overall disk dust mass properties. These comparisons between populations reinforce previous conclusions that disks in the Ophiuchus star-forming region have anomalously low masses at all evolutionary stages. Additionally, we find a single deeply embedded protostar that has not been documented elsewhere in the literature and, from the CO line data, 15 protostellar outflows, which we catalog here.
more »
« less
- Award ID(s):
- 1907486
- PAR ID:
- 10373630
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 938
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 55
- Size(s):
- Article No. 55
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The stellar cluster environment is expected to play a central role in the evolution of circumstellar disks. We use thermochemical modeling to constrain the dust and gas masses, disk sizes, UV and X-ray radiation fields, viewing geometries, and central stellar masses of 20 class II disks in the Orion Nebula Cluster (ONC). We fit a large grid of disk models to 350 GHz continuum, CO J = 3 − 2, and HCO + J = 4 − 3 Atacama Large Millimeter/submillimeter Array observations of each target, and we introduce a procedure for modeling interferometric observations of gas disks detected in absorption against a bright molecular cloud background. We find that the ONC disks are massive and compact, with typical radii <100 au, gas masses ≥10 −3 M ⊙ , and gas-to-dust ratios ≥100. The interstellar‐medium‐like gas-to-dust ratios derived from our modeling suggest that compact, externally irradiated disks in the ONC are less prone to gas-phase CO depletion than the massive and extended gas disks that are commonly found in nearby low-mass star-forming regions. The presence of massive gas disks indicates that external photoevaporation may have only recently begun operating in the ONC; though it remains unclear whether other cluster members are older and more evaporated than the ones in our sample. Finally, we compare our dynamically derived stellar masses with the stellar masses predicted from evolutionary models and find excellent agreement. Our study has significantly increased the number of dynamical mass measurements in the mass range ≤0.5 M ⊙ , demonstrating that the ONC is an ideal region for obtaining large samples of dynamical mass measurements toward low-mass M-dwarfs.more » « less
-
Abstract While dust disks around optically visible, Class II protostars are found to be vertically thin, when and how dust settles to the midplane are unclear. As part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks, we analyze the edge-on, embedded, Class I protostar IRAS 04302+2247, also nicknamed the “Butterfly Star.” With a resolution of 0.″05 (8 au), the 1.3 mm continuum shows an asymmetry along the minor axis that is evidence of an optically thick and geometrically thick disk viewed nearly edge-on. There is no evidence of rings and gaps, which could be due to the lack of radial substructure or the highly inclined and optically thick view. With 0.″1 (16 au) resolution, we resolve the 2D snow surfaces, i.e., the boundary region between freeze-out and sublimation, for12COJ= 2–1,13COJ= 2–1, C18OJ= 2–1,H2COJ= 30,3–20,2, and SOJ= 65–54, and constrain the CO midplane snow line to ∼130 au. We find Keplerian rotation around a protostar of 1.6 ± 0.4M⊙using C18O. Through forward ray-tracing using RADMC-3D, we find that the dust scale height is ∼6 au at a radius of 100 au from the central star and is comparable to the gas pressure scale height. The results suggest that the dust of this Class I source has yet to vertically settle significantly.more » « less
-
We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108 M⊙along the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M⊙; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109 M⊙) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.more » « less
-
null (Ed.)Context. Recent years have seen building evidence that planet formation starts early, in the first ~0.5 Myr. Studying the dust masses available in young disks enables us to understand the origin of planetary systems given that mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. Aims. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. Methods. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 (1.1–1.3 mm) continuum observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka -band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities measured in the image plane. Results. We find a strong linear correlation between the ALMA and VLA fluxes, demonstrating that emission at both wavelengths is dominated by dust emission. For a subsample of optically thin sources, we find a median spectral index of 2.5 from which we derive the dust opacity index β = 0.5, suggesting significant dust growth. Comparison with ALMA surveys of Orion shows that the Class I dust disk mass distribution between the two regions is similar, but that the Class 0 disks are more massive in Perseus than those in Orion. Using the DIANA opacity model including large grains, with a dust opacity value of κ 9 mm = 0.28 cm 2 g −1 , the median dust masses of the embedded disks in Perseus are 158 M ⊕ for Class 0 and 52 M ⊕ for Class I from the VLA fluxes. The lower limits on the median masses from ALMA fluxes are 47 M ⊕ and 12 M ⊕ for Class 0 and Class I, respectively, obtained using the maximum dust opacity value κ 1.3 mm = 2.3 cm 2 g −1 . The dust masses of young Class 0 and I disks are larger by at least a factor of ten and three, respectively, compared with dust masses inferred for Class II disks in Lupus and other regions. Conclusions. The dust masses of Class 0 and I disks in Perseus derived from the VLA data are high enough to produce the observed exoplanet systems with efficiencies acceptable by planet formation models: the solid content in observed giant exoplanets can be explained if planet formation starts in Class 0 phase with an efficiency of ~15%. A higher efficiency of ~30% is necessary if the planet formation is set to start in Class I disks.more » « less
An official website of the United States government
