skip to main content


Title: Constraining the Upper Level Vibrational Populations of the N 2 Lyman‐Birge‐Hopfield Band System Using GOLD Mission's Dayglow Observations
Abstract

Current and previous thermospheric remote sensing missions use N2Lyman‐Birge‐Hopfield (LBH) band dayglow emission measurements to retrieve line‐of‐sight thermospheric composition and temperature. The precision of thermospheric composition and temperature retrieved from observations depends on the uncertainty in the relative LBH vibrational populations. In the laboratory, electron impact induced LBH emission measurements have shown that the relative vibrational populations change with gas pressure. However, it is not fully understood how these populations change for dayglow observations where the emissions that contribute to the observations vary with solar illumination and line‐of‐sight geometry. We quantify the relative vibrational populations as a function of solar zenith angle (SZA) and tangent altitude using Global‐scale Observations of Limb and Disk mission's LBH dayglow observations. We find that, while some lower vibrational levels show potential enhancement with increasing pressure (decreasing altitude), in general, they do not change significantly with SZA or tangent altitude for dayglow observations. The vibrational populations can thus be assumed as fixed parameters when retrieving neutral disk temperatures from remotely sensed LBH dayglow observations.

 
more » « less
NSF-PAR ID:
10373634
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio. 
    more » « less
  2. Abstract

    Far ultraviolet observations of Earth's dayglow from the National Aeronautics and Space Administration (NASA) Global‐scale Observations of the Limb and Disk (GOLD) mission presents an unparalleled opportunity for upper atmosphere radiance data assimilation. Assimilation of the Lyman‐Birge‐Hopfield (LBH) band emissions can be formulated in a similar fashion to lower atmosphere radiance data assimilation approaches. To provide a proof‐of‐concept for such an approach, this paper presents assimilation experiments of simulated LBH emission data using an ensemble filter measurement update step implemented with National Oceanic and Atmospheric Administration (NOAA)'s Whole Atmosphere Model (WAM) and National Center for Atmospheric Research (NCAR)'s Global Airglow (GLOW) model. Primary findings from observing system simulation experiments (OSSEs), wherein “truth” atmospheric conditions simulated by NCAR's Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) are used to generate synthetic GOLD data, are as follows: (1) Assimilation of GOLD LBH disk emission data can reduce the bias in model temperature specification (ensemble mean) by 60% under both geomagnetically quiet conditions and disturbed conditions. (2) The reduction in model uncertainty (ensemble spread) as a result of assimilation is about 20% in the lower thermosphere and 30% in the upper thermosphere for both conditions. These OSSEs demonstrate the potential for far ultraviolet radiance data assimilation to dramatically reduce the model biases in thermospheric temperature specification and to extend the utility of GOLD observations by helping to resolve the altitude‐dependent global‐scale response of the thermosphere to geomagnetic storms.

     
    more » « less
  3. Abstract

    The ultraviolet‐imaging spectrograph that comprises Global‐scale Observations of the Limb and Disk (GOLD) mission in geostationary orbit at 47.5°W longitude has taken full disk images at high cadence throughout the deep solar minimum period of 2019–2020. Synoptic (i.e., concurrent and spatially unified and resolved) observations of thermospheric temperature and composition at ∼150 km altitude are made for the first time, allowing GOLD to disambiguate temporal and spatial variations. Here we analyze the daytime effective temperature and column integrated O and N2density ratio (ΣO/N2) data simultaneously observed by GOLD over 120°W–20°E longitude and 60°S–60°N latitude from 13 October 2019 to 12 October 2020. Daily zonal mean values are calculated for each latitude and compared with NRLMSIS 2.0 and simulations from the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM‐X). On average, the GOLD observations show higher temperatures than Mass Spectrometer Incoherent Scatter radar (MSIS) and WACCM‐X by ∼20–60 K (5%–10%) and 80–120 K (12%–18%), respectively. The ΣO/N2ratios observed by GOLD are larger than the MSIS results by ∼0.4 (40%) but smaller than the WACCM‐X simulations by ∼0.3 (30%). The observed and modeled results are correlated at most latitudes (r = 0.4–0.8), and GOLD, MSIS, and WACCM‐X all display a similar seasonal variation and change with latitude. WACCM‐X simulates a larger annual variation in ΣO/N2, suggesting that the thermospheric circulation is overestimated and atmospheric waves and turbulence transport are not properly represented in the model.

     
    more » « less
  4. Abstract

    Recent work has indicated the presence of a nitric oxide (NO) product channel in the reaction between the higher vibrational levels of the first electronically excited state of molecular nitrogen, N2(A), and atomic oxygen. A steady‐state model for the N2(A) vibrational distribution in the terrestrial thermosphere is here described and validated by comparison with N2A‐X, Vegard‐Kaplan dayglow spectra from the Ionospheric Spectroscopy and Atmospheric Chemistry spectrograph. A computationally cheaper method is needed for implementation of the N2(A) chemistry into time‐dependent thermospheric models. It is shown that by scaling the photoelectron impact production of ionized N2by a Gaussian centered near 100 km, the level‐specific N2(A) production rates between 100 and 200 km can be reproduced to within an average of 5%. This scaling, and thus the N2electron impact ionization/excitation ratio, is nearly independent of existing uncertainties in the 2–20 nm solar soft X‐ray irradiance. To investigate this independence, the N2electron‐impact excitation cross sections in the GLOW photoelectron model are replaced with the results of Johnson et al. (2005,https://doi.org/10.1029/2005JA011295) and the multipart work of Malone et al. (2009https://doi.org/10.1103/PhysRevA.79.032704) (Malone, Johnson, Young, et al., 2009,https://doi.org/10.1088/0953-4075/42/22/225202; Malone, Johnson, Kanik, et al., 2009,https://doi.org/10.1103/PhysRevA.79.032705; Malone et al., 2009,https://doi.org/10.1103/PhysRevA.79.032704), together denotedJ05M09. Upon updating these cross sections it is found that (1) the total N2triplet excitation rate remains nearly constant; (2) the steady state N2(A) vibrational distribution is shifted to higher levels; (3) the total N2singlet excitation rate responsible for the Lyman‐Birge‐Hopfield emission is reduced by 33%. It is argued that adopting theJ05M09 cross sections supports (1) the larger X‐ray fluxes measured by the Student Nitric Oxide Explorer (SNOE) and (2) a temperature‐independent N2(A)+O reaction rate coefficient.

     
    more » « less
  5. Abstract

    We present the spatially resolved absolute brightness of the Fex, Fexi, and Fexivvisible coronal emission lines from 1.08 to 3.4R, observed during the 2019 July 2 total solar eclipse (TSE). The morphology of the corona was typical of solar minimum, with a dipole field dominance showcased by large polar coronal holes and a broad equatorial streamer belt. The Fexiline is found to be the brightest, followed by Fexand Fexiv(in diskBunits). All lines had brightness variations between streamers and coronal holes, where Fexivexhibited the largest variation. However, Fexremained surprisingly uniform with latitude. The Fe line brightnesses are used to infer the relative ionic abundances and line-of-sight-averaged electron temperature (Te) throughout the corona, yielding values from 1.25 to 1.4 MK in coronal holes and up to 1.65 MK in the core of streamers. The line brightnesses and inferredTevalues are then quantitatively compared to the Predictive Science Inc. magnetohydrodynamic model prediction for this TSE. The MHD model predicted the Fe lines rather well in general, while the forward-modeled line ratios slightly underestimated the observationally inferredTewithin 5%–10% averaged over the entire corona. Larger discrepancies in the polar coronal holes may point to insufficient heating and/or other limitations in the approach. These comparisons highlight the importance of TSE observations for constraining models of the corona and solar wind formation.

     
    more » « less