Current and previous thermospheric remote sensing missions use N2Lyman‐Birge‐Hopfield (LBH) band dayglow emission measurements to retrieve line‐of‐sight thermospheric composition and temperature. The precision of thermospheric composition and temperature retrieved from observations depends on the uncertainty in the relative LBH vibrational populations. In the laboratory, electron impact induced LBH emission measurements have shown that the relative vibrational populations change with gas pressure. However, it is not fully understood how these populations change for dayglow observations where the emissions that contribute to the observations vary with solar illumination and line‐of‐sight geometry. We quantify the relative vibrational populations as a function of solar zenith angle (SZA) and tangent altitude using Global‐scale Observations of Limb and Disk mission's LBH dayglow observations. We find that, while some lower vibrational levels show potential enhancement with increasing pressure (decreasing altitude), in general, they do not change significantly with SZA or tangent altitude for dayglow observations. The vibrational populations can thus be assumed as fixed parameters when retrieving neutral disk temperatures from remotely sensed LBH dayglow observations.
more » « less- Award ID(s):
- 2031349
- PAR ID:
- 10373634
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 127
- Issue:
- 9
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio.more » « less
-
Abstract Far ultraviolet observations of Earth's dayglow from the National Aeronautics and Space Administration (NASA) Global‐scale Observations of the Limb and Disk (GOLD) mission presents an unparalleled opportunity for upper atmosphere radiance data assimilation. Assimilation of the Lyman‐Birge‐Hopfield (LBH) band emissions can be formulated in a similar fashion to lower atmosphere radiance data assimilation approaches. To provide a proof‐of‐concept for such an approach, this paper presents assimilation experiments of simulated LBH emission data using an ensemble filter measurement update step implemented with National Oceanic and Atmospheric Administration (NOAA)'s Whole Atmosphere Model (WAM) and National Center for Atmospheric Research (NCAR)'s Global Airglow (GLOW) model. Primary findings from observing system simulation experiments (OSSEs), wherein “truth” atmospheric conditions simulated by NCAR's Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) are used to generate synthetic GOLD data, are as follows: (1) Assimilation of GOLD LBH disk emission data can reduce the bias in model temperature specification (ensemble mean) by 60% under both geomagnetically quiet conditions and disturbed conditions. (2) The reduction in model uncertainty (ensemble spread) as a result of assimilation is about 20% in the lower thermosphere and 30% in the upper thermosphere for both conditions. These OSSEs demonstrate the potential for far ultraviolet radiance data assimilation to dramatically reduce the model biases in thermospheric temperature specification and to extend the utility of GOLD observations by helping to resolve the altitude‐dependent global‐scale response of the thermosphere to geomagnetic storms.
-
Abstract The ultraviolet‐imaging spectrograph that comprises Global‐scale Observations of the Limb and Disk (GOLD) mission in geostationary orbit at 47.5°W longitude has taken full disk images at high cadence throughout the deep solar minimum period of 2019–2020. Synoptic (i.e., concurrent and spatially unified and resolved) observations of thermospheric temperature and composition at ∼150 km altitude are made for the first time, allowing GOLD to disambiguate temporal and spatial variations. Here we analyze the daytime effective temperature and column integrated O and N2density ratio (ΣO/N2) data simultaneously observed by GOLD over 120°W–20°E longitude and 60°S–60°N latitude from 13 October 2019 to 12 October 2020. Daily zonal mean values are calculated for each latitude and compared with NRLMSIS 2.0 and simulations from the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM‐X). On average, the GOLD observations show higher temperatures than Mass Spectrometer Incoherent Scatter radar (MSIS) and WACCM‐X by ∼20–60 K (5%–10%) and 80–120 K (12%–18%), respectively. The ΣO/N2ratios observed by GOLD are larger than the MSIS results by ∼0.4 (40%) but smaller than the WACCM‐X simulations by ∼0.3 (30%). The observed and modeled results are correlated at most latitudes (
r = 0.4–0.8), and GOLD, MSIS, and WACCM‐X all display a similar seasonal variation and change with latitude. WACCM‐X simulates a larger annual variation in ΣO/N2, suggesting that the thermospheric circulation is overestimated and atmospheric waves and turbulence transport are not properly represented in the model. -
Abstract A total solar eclipse occurred in the Southern Hemisphere on 2 July 2019 from approximately 17 to 22 UT. Its effect in the thermosphere over South America was imaged from geostationary orbit by NASA's Global‐scale Observation of Limb and Disk (GOLD) instrument. GOLD observed a large brightness reduction (>80% around totality) in OI 135.6 nm and N2LBH band emissions compared to baseline measurements made 2 days prior. In addition, a significant enhancement (with respect to the baseline) in the ΣO/N2column density ratio (~80%) was observed within the eclipse's totality. This enhancement suggests that the eclipse induced compositional changes in the thermosphere. After the eclipse passed, a slight enhancement in ΣO/N2column density ratio (~7%) was also seen around the totality path when compared to measurements before the eclipse. These observations are the first synoptic imaging measurements of an eclipse's thermospheric effects with the potential to drastically improve and test our understanding of how the thermosphere responds to rapid, localized changes in solar short wavelength radiation.
-
Abstract We present the spatially resolved absolute brightness of the Fe
x , Fexi , and Fexiv visible coronal emission lines from 1.08 to 3.4R ⊙, observed during the 2019 July 2 total solar eclipse (TSE). The morphology of the corona was typical of solar minimum, with a dipole field dominance showcased by large polar coronal holes and a broad equatorial streamer belt. The Fexi line is found to be the brightest, followed by Fex and Fexiv (in diskB ⊙units). All lines had brightness variations between streamers and coronal holes, where Fexiv exhibited the largest variation. However, Fex remained surprisingly uniform with latitude. The Fe line brightnesses are used to infer the relative ionic abundances and line-of-sight-averaged electron temperature (T e ) throughout the corona, yielding values from 1.25 to 1.4 MK in coronal holes and up to 1.65 MK in the core of streamers. The line brightnesses and inferredT e values are then quantitatively compared to the Predictive Science Inc. magnetohydrodynamic model prediction for this TSE. The MHD model predicted the Fe lines rather well in general, while the forward-modeled line ratios slightly underestimated the observationally inferredT e within 5%–10% averaged over the entire corona. Larger discrepancies in the polar coronal holes may point to insufficient heating and/or other limitations in the approach. These comparisons highlight the importance of TSE observations for constraining models of the corona and solar wind formation.