skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Panmixia in spiders ( Mecaphesa celer , Thomisidae) despite fragmented habitat at Craters of the Moon in Idaho
Abstract A fragmented landscape, which contains a patchwork of vegetated hospitable areas and a barren intervening matrix, may reduce gene flow in a population and over time result in an increase in population structure.We tested this prediction in crab spiders (Mecaphesa celer(Hentz, 1847)) inhabiting isolated habitat patches in the lava matrix of Craters of the Moon National Monument and Preserve, Idaho, USA.Using reduced‐representation genomic sequencing, we did not find evidence of population structure due to a reduction in gene flow among habitat patches.Instead, our results show strong evidence of panmixia likely due to abundant juvenile dispersal and possible connectivity to outer regions surrounding the lava flows despite the species' habitat specificity.  more » « less
Award ID(s):
1751157
PAR ID:
10373687
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecological Entomology
Volume:
47
Issue:
4
ISSN:
0307-6946
Format(s):
Medium: X Size: p. 645-656
Size(s):
p. 645-656
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flowering phenology can vary considerably even at fine spatial scales, potentially leading to temporal reproductive isolation among habitat patches. Climate change could alter flowering synchrony, and hence temporal isolation, if plants in different microhabitats vary in their phenological response to climate change. Despite the importance of temporal isolation in determining patterns of gene flow, and hence population genetic structure and local adaptation, little is known about how changes in climate affect temporal isolation within populations.Here, we use flowering phenology and floral abundance data of 50 subalpine plant species over 44 years to test whether temporal isolation between habitat patches is affected by spring temperature. For each species and year, we analysed temporal separation in peak flowering and flowering overlap between habitat patches separated by 5–950 m.Across our study species, warmer springs were associated with more temporal differentiation in flowering peaks among habitat patches, and less flowering overlap, increasing potential for temporal isolation within populations.Synthesis. By reducing opportunities for mating among plants in nearby habitat patches, our results suggest that warmer springs may reduce opportunities for gene flow within populations, and, consequently, the capacity of plant populations to adapt to environmental changes. 
    more » « less
  2. Abstract Maintaining the ability of organisms to move between suitable patches of habitat despite ongoing habitat loss is essential to conserving biodiversity. Quantifying connectivity has therefore become a central focus of conservation planning. A large number of metrics have been developed to estimate potential connectivity based on habitat configuration, matrix structure and information on organismal movement, and it is often assumed that metrics explain actual connectivity. Yet, validation of metrics is rare, particularly across entire landscapes undergoing habitat loss—a crucial problem that connectivity conservation aims to mitigate.We leveraged a landscape‐scale habitat loss and fragmentation experiment to assess the performance of commonly used patch‐ and landscape‐scale connectivity metrics against observed movement data, test whether incorporating information about the matrix improves connectivity metrics and examine the performance of metrics across a gradient of habitat loss. We tested whether 38 connectivity metrics predict movement at the patch (i.e. patch immigration rates) and landscape (i.e., total movements) scale for a pest insect, the cactus bugChelinidea vittiger, across 15 replicate landscapes.Metrics varied widely in their ability to explain actual connectivity. At the patch scale, dPCflux, which describes the contribution of a patch to movement across the landscape independent of patch size, best explained immigration rates. At the landscape scale, total movements were best explained by a mesoscale metric that captures that distance between clusters of patches (i.e. modules). Incorporating the matrix did not necessarily improve the ability of metrics to predict actual connectivity. Across the habitat loss gradient, dPCfluxwas sensitive to habitat amount.Synthesis and applications. Our study provides a much‐needed evaluation of network connectivity metrics at the patch and landscape scales, emphasizing that accurate quantification of connectivity requires the incorporation, not only of habitat amount but also habitat configuration and information on dispersal capability of species. We suggest that variation in habitat may often be more critical for interpreting network connectivity than the matrix, and advise that connectivity metrics may be sensitive to habitat loss and should therefore be applied with caution to highly fragmented landscapes. Finally, we recommend that applications integrate mesoscale configuration of habitat into connectivity strategies. 
    more » « less
  3. Abstract Although corridors are frequently regarded as a way to mitigate the negative effects of habitat fragmentation, concerns persist that corridors may facilitate the spread of invasive species to the detriment of native species.The invasive fire ant,Solenopsis invicta,has two social forms. The polygyne form has limited dispersal abilities relative to the monogyne form. Our previous work in a large‐scale corridor experiment showed that in landscapes dominated by the polygyne form, fire ant density was higher and native ant species richness was lower in habitat patches connected by corridors than in unconnected patches.We expected that these observed corridor effects would be transient, that is, that fire ant density and native ant species richness differences between connected and unconnected patches would diminish over time as fire ants eventually fully established within patches. We tested this prediction by resampling the three landscapes dominated by polygyne fire ants 6 to 11 years after our original study.Differences in fire ant density between connected and unconnected habitat patches in these landscapes decreased, as expected. Differences in native ant species richness were variable but lowest in the last 2 years of sampling.These findings support our prediction of transient corridor effects on this invasive ant and stress the importance of temporal dynamics in assessing population and community impacts of habitat connectivity. 
    more » « less
  4. Abstract Spatial partitioning is a classic hypothesis to explain plant species coexistence, but evidence linking local environmental variation to spatial sorting, demography and species' traits is sparse. If co‐occurring species' performance is optimized differently along environmental gradients because of trait variation, then spatial variation might facilitate coexistence.We used a system of four naturally co‐occurring species ofClarkia(Onagraceae) to ask whether distribution patchiness corresponds to variation in two environmental variables that contribute to hydrological variation. We then reciprocally sowedClarkiainto each patch type and measured demographic rates in the absence of congeneric competition. Species sorted in patches along one or both gradients, and in three of the four species, germination rate in the ‘home’ patch was higher than all other patches.Spatially variable germination resulted in the same three species exhibiting the highest population growth rates in their home patches.Species' trait values related to plant water use, as well as indicators of water stress in home patches, differed among species and corresponded to home patch attributes. However, post‐germination survival did not vary among species or between patch types, and fecundity did not vary spatially.Synthesis. Our research demonstrates the likelihood that within‐community spatial heterogeneity affects plant species coexistence, and presents novel evidence that differential performance in space is explained by what happens in the germination stage. Despite the seemingly obvious link between adult plant water‐use and variation in the environment, our results distinguish the germination stage as important for spatially variable population performance. 
    more » « less
  5. Abstract Stomata play a critical role in regulating plant responses to climate. Where sister species differ in stomatal traits, interspecific gene flow can influence the evolutionary trajectory of trait variation, with consequences to adaptation.Leveraging six latitudinally-distributed transects spanning the natural hybrid zone betweenPopulus trichocarpa–P. balsamifera, we used whole genome resequencing and replicate common garden experiments to test the role that interspecific gene flow and selection play to stomatal trait evolution.While species-specific differences in the distribution of stomata persist betweenP. balsamiferaandP. trichocarpa, hybrids on average resembledP. trichocarpa. Admixture mapping identified several candidate genes associated with stomatal trait variation in hybrids includingTWIST, a homolog ofSPEECHLESSinArabidopsis, that initiates stomatal development via asymmetric cell divisions. Geographic clines revealed candidate genes deviating from genome-wide average patterns of introgression, suggesting restricted gene flow and the maintenance of adaptive differences. Climate associations, particularly with precipitation, indicated selection shapes local ancestry at candidate genes across transects.These results highlight the role of climate in shaping stomatal trait evolution inPopulusand demonstrate how interspecific gene flow creates novel genetic combinations that may enhance adaptive potential in changing environments. 
    more » « less