Abstract To overcome challenges with observing ocean heat content (OHC) over the entire ocean, we propose a novel approach that exploits the abundance of satellite data, including data from modern satellite geomagnetic surveys such as Swarm. The method considers a novel combination of conventional in situ (temperature and pressure) as well as satellite (altimetry and gravimetry) data with estimates of ocean electrical conductance (depth-integrated conductivity), which can potentially be obtained from magnetic observations (by satellite, land, seafloor, ocean, and airborne magnetometers). To demonstrate the potential benefit of the proposed method, we sample model output of an ocean state estimate to reflect existing observations and train a machine learning algorithm [Generalized Additive Model (GAM)] on these samples. We then calculate OHC everywhere using information potentially derivable from various global satellite coverage—including magnetic observations—to gauge the GAM’s goodness of fit on a global scale. Inclusion of in situ observations of OHC in the upper 2000 m from Argo-like floats and conductance data each reduce the root-mean-square error by an order of magnitude. Retraining the GAM with recent ship-based hydrographic data attains a smaller RMSE in polar oceans than training the GAM only once on all available historical ship-based hydrographic data; the opposite is true elsewhere. The GAM more accurately calculates OHC anomalies throughout the water column than below 2000 m and can detect global OHC anomalies over multiyear time scales, even when considering hypothetical measurement errors. Our method could complement existing methods and its accuracy could be improved through careful ship-based campaign planning. Significance Statement The purpose of this manuscript is to demonstrate the potential for practical implementation of a remote monitoring method for ocean heat content (OHC) anomalies. To do this, we sample data from a reanalysis product primarily because of the dearth of observations below 2000 m depth that can be used for validation and the fact that full-depth-integrated electrical seawater conductivity data products derived from satellite magnetometry are not yet available. We evaluate multiple factors related to the accuracy of OHC anomaly estimation and find that, even with hypothetical measurement errors, our method can be used to monitor OHC anomalies on multiyear time scales.
more »
« less
Oceanic Electrical Conductivity Variability From Observations and Its Budget From an Ocean State Estimate
Abstract Because spatio‐temporal variations in ocean heat content (OHC) are strongly predicted by ocean conductivity content (OCC) over most of the global ocean, we analyze the dynamical budget and behavior of the electrical conductivity of seawater. To perform these analyses, we use an ocean‐model state estimate designed to accurately represent long‐term variations in ocean properties in a dynamically and kinematically consistent way. We show that this model accurately reproduces the spatio‐temporal variations in electrical conductivity seen in satellite‐derived data and in a seasonal climatology product derived from in‐situ data, justifying use of the model data to perform further analyses. An empirical orthogonal function analysis suggests that the vast majority of the variance in OHC and OCC can be explained by similar mechanisms. The electrical conductivity budget's most important term is the temperature forcing tendency term, suggesting that ocean heat uptake is the mechanism responsible for the strong relationship between OCC and OHC.
more »
« less
- Award ID(s):
- 2048789
- PAR ID:
- 10373773
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 18
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Ocean heat content (OHC) is key to estimating the energy imbalance of the earth system. Over the past two decades, an increasing number of OHC studies were conducted using oceanic objective analysis (OA) products. Here we perform an intercomparison of OHC from eight OA products with a focus on their robust features and significant differences over the Argo period (2005-2019), when the most reliable global scale oceanic measurements are available. For the global ocean, robust warming in the upper 2000 m is confirmed. The 0-300 m layer shows the highest warming rate but is heavily modulated by interannual variability, particularly the El Niño–Southern Oscillation. The 300-700 m and 700-2000 m layers, on the other hand, show unabated warming. Regionally, the Southern Ocean and mid-latitude North Atlantic show a substantial OHC increase, and the subpolar North Atlantic displays an OHC decrease. A few apparent differences in OHC among the examined OA products were identified. In particular, temporal means of a few OA products that incorporated other ocean measurements besides Argo show a global-scale cooling difference, which is likely related to the baseline climatology fields used to generate those products. Large differences also appear in the interannual variability in the Southern Ocean and in the long-term trends in the subpolar North Atlantic. These differences remind us of the possibility of product-dependent conclusions on OHC variations. Caution is therefore warranted when using merely one OA product to conduct OHC studies, particularly in regions and on timescales that display significant differences.more » « less
-
Oceanic tidal constituents and depth-integrated electrical conductivity (ocean conductivity content, or OCC) extracted from electromagnetic (EM) field data are known to have a strong potential for monitoring ocean heat content, which reflects the Earth’s energy imbalance. In comparison to ocean tide models, realistic ocean general circulation models have a greater need to be baroclinic; therefore, both OCC and depth-integrated conductivity-weighted velocity 𝐓𝛔 data are required to calculate the ocean circulation-induced magnetic field (OCIMF). Owing to a lack of 𝐓𝛔 observations, we calculate the OCIMF using an ocean state estimate. There are significant trends in the OCIMF primarily owing to responses in the velocities to external forcings and the warming influence on OCC between 1993 and 2017, particularly in the Southern Ocean. Despite being depth-integrated quantities, OCC and 𝐓𝛔 (which primarily determine the OCIMF in an idealized EM model) can provide a strong constraint on the baroclinic velocities and ocean mixing parameters when assimilated into an ocean state estimation framework. A hypothetical fleet of full-depth EM-capable floats would therefore help improve the accuracy of the OCIMF computed with an ocean state estimate, which could potentially provide valuable guidance on how to extract the OCIMF from satellite magnetometry observations.more » « less
-
Abstract This study investigated how ocean optical properties and solar attenuation may affect the upper ocean temperature structure and ocean heat content (OHC). We employed a realistic three‐dimensional ocean circulation model for the northwestern Atlantic to simulate ocean states during the active Atlantic hurricane season of 2017. Sensitivity experiments were performed by coupling the ocean circulation prediction with either a conventional water type‐based solar attenuation model or an inherent optical properties (IOP)‐based model. Validations against in‐situ ocean temperature observations and remote sensing‐derived OHC showed that ocean simulations using the IOP‐based model outperformed simulations using the conventional water type‐based model in predicting sea surface temperature, upper ocean thermal structure, and OHC. An OHC‐hurricane intensity relationship derived for five major hurricanes in 2017 suggests that the ocean optical properties and the application of an appropriate solar attenuation model are important for the forecast of hurricane intensity.more » « less
-
Abstract Ocean warming is a key factor impacting future changes in climate. Here we investigate vertical structure changes in globally averaged ocean heat content (OHC) in high‐ (HR) and low‐resolution (LR) future climate simulations with the Community Earth System Model (CESM). Compared with observation‐based estimates, the simulated OHC anomalies in the upper 700 and 2,000 m during 1960–2020 are more realistic in CESM‐HR than ‐LR. Under RCP8.5 scenario, the net surface heat into the ocean is very similar in CESM‐HR and ‐LR. However, CESM‐HR has a larger increase in OHC in the upper 250 m compared to CESM‐LR, but a smaller increase below 250 m. This difference can be traced to differences in eddy‐induced vertical heat transport between CESM‐HR and ‐LR in the historical period. Moreover, our results suggest that with the same heat input, upper‐ocean warming is likely to be underestimated by most non‐eddy‐resolving climate models.more » « less
An official website of the United States government
