skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: Seismic Anisotropy and Mantle Flow in the Sumatra Subduction Zone Constrained by Shear Wave Splitting and Receiver Function Analyses
Abstract

To systematically investigate seismic azimuthal anisotropy in the Sumatra subduction zone and probe mantle dynamics associated with the subduction of the Australian Plate beneath the Sunda Plate, a total of 169 pairs of teleseismic XKS (including PKS, SKKS, SKS) and 115 pairs of localSsplitting parameters are obtained using broadband seismic data recorded at ~70 stations. Additionally, crustal anisotropy in the overriding Sunda Plate is measured by analyzing the moveout ofP‐to‐Sconversions from the Moho using a sinusoidal function. Comparison between the three sets of anisotropy measurements obtained using shear waves with different depths of origin suggests that (1) the crust of the Sunda Plate is anisotropic with mostly trench‐parallel fast orientations and a mean splitting time of 0.28 ± 0.05 s; (2) the mantle wedge is azimuthally anisotropic with dominantly trench‐parallel fast orientations and splitting times ranging from 0.22 to 0.81 s, which generally increase with the focal depth; and (3) subslab anisotropy is mostly trench‐normal beneath the fore‐arc region with an averaged splitting time of 1.48 ± 0.06 s, and becomes trench‐parallel beneath the arc and back‐arc areas with a mean splitting time of 0.33 ± 0.04 s. The resulting lateral and vertical distributions of anisotropy obtained using splitting of three types of shear waves advocate the presence of an entrained subslab flow that is deflected by the mantle transition zone. The flow enters the mantle wedge through a slab window and flows horizontally parallel to the trench.

 
more » « less
Award ID(s):
1919789 1830644
NSF-PAR ID:
10373776
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
21
Issue:
2
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study represents the first campaign‐style teleseismic shear wave splitting (SWS) investigation of central Myanmar, an area that is tectonically controlled by the oblique subduction of the Indian Plate underneath the Eurasian Plate. The resulting 678 well‐defined and 247 null SWS measurements obtained from recently deployed 71 broadband seismic stations show that the Indo‐Burma Ranges (IBR) possess mostly N‐S fast orientations that are parallel to the trend of the depth contours of the subducted slab. Relative to the global average of 1.0 s, extremely large splitting times with station‐averaged values ranging from 1.28 to 2.79 s and an area‐averaged value of 2.09 ± 0.55 s are observed in the IBR. In contrast, the Central Basin (CB) and the Shan Plateau (SP) are characterized by slightly larger than normal splitting times. The fast orientations observed in the CB are mostly NE‐SW in the northern part of the study area, N‐S in the central part, and NW‐SE in the southern part. The fast orientations change from nearly N‐S along the N‐S oriented Sagaing Fault, to NW‐SE in the central and eastern portions of the SP. These observations, together with SWS measurements using local S events, crustal anisotropy measurements using P‐to‐S receiver functions, and the estimated depth of the source of anisotropy using the spatial coherency of the splitting parameters, suggest the presence of a trench‐parallel sub‐slab flow system driven by slab rollback, a trench‐perpendicular corner flow, and a trench‐parallel flow possibly entering the mantle wedge through a slab window or gap.

     
    more » « less
  2. Abstract

    Seismic azimuthal anisotropy characterized by shear wave splitting analyses using teleseismicXKSphases (includingSKS,SKKS, andPKS) is widely employed to constrain the deformation field in the Earth's crust and mantle. Due to the near‐vertical incidence of theXKSarrivals, the resulting splitting parameters (fast polarization orientations and splitting times) have an excellent horizontal but poor vertical resolution, resulting in considerable ambiguities in the geodynamic interpretation of the measurements. Here we useP‐to‐Sconverted phases from the Moho and the 410‐ (d410) and 660‐km (d660) discontinuities to investigate anisotropy layering beneath Southern California. Similarities between the resulting splitting parameters from theXKSandP‐to‐Sconverted phases from thed660 suggest that the lower mantle beneath the study area is azimuthally isotropic. Similarly, significant azimuthal anisotropy is not present in the mantle transition zone on the basis of the consistency between the splitting parameters obtained usingP‐to‐Sconverted phases from thed410 andd660. Crustal anisotropy measurements exhibit a mean splitting time of 0.2 ± 0.1 s and mostly NW‐SE fast orientations, which are significantly different from the dominantly E‐W fast orientations revealed usingXKSandP‐to‐Sconversions from thed410 andd660. Anisotropy measurements using shear waves with different depths of origin suggest that the Earth's upper mantle is the major anisotropic layer beneath Southern California. Additionally, this study demonstrates the effectiveness of applying a set of azimuthal anisotropy analysis techniques to reduce ambiguities in the depth of the source of the observed anisotropy.

     
    more » « less
  3. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less
  4. Abstract

    To investigate the effects of a slab edge and varying slab geometry on the mantle flow systems beneath south central Alaska, a total of 971 pairs of teleseismic shear wave (SKS, SKKS, and PKS) and 65 pairs of local S wave splitting parameters (fast orientations and splitting times) are measured using data from the USArray and other networks. The Pacific‐Yakutat slab edge separates two regions with different characteristics of the splitting measurements. The area to the west of the slab edge has greater splitting times and mostly trench parallel fast orientations, and the area to the east is dominated by smaller splitting times and spatially varying fast orientations. The spatial distribution of the splitting parameters and results of anisotropy layering and depth analyses can be explained by a model involving three flow systems. The sub‐slab flow initially entraining with the shallow‐dipping Yakutat slab deflects to a trench‐parallel direction due to slab retreat and an increase in slab dip, and flows northeastward toward the slab edge, where it splits into two branches. The first branch enters the mantle wedge as a toroidal flow and flows southwestward along the slab, and the second branch continues approximately eastward. The flowlines of the toroidal and continued flow systems are approximately orthogonal to each other in the vicinity of the slab edge, producing the observed small splitting times and spatially varying fast orientations.

     
    more » « less
  5. Abstract

    Seismic azimuthal anisotropy beneath Australia is investigated using splitting of the teleseismic PKS, SKKS, and SKS phases to delineate asthenospheric flow and lithospheric deformation beneath one of the oldest and fast‐moving continents on Earth. In total 511 pairs of high‐quality splitting parameters were observed at 116 seismic stations. Unlike other stable continental areas in Africa, East Asia, and North America, where spatially consistent splitting parameters dominate, the fast orientations and splitting times observed in Australia show a complex pattern, with a slightly smaller than normal average splitting time of 0.85 ± 0.33 s. On the North Australian Craton, the fast orientations are mostly N‐S, which is parallel to the absolute plate motion (APM) direction in the hotspot frame. Those observed in the South Australian Craton are mostly NE‐SW and E‐W, which are perpendicular to the maximum lithospheric horizontal shortening direction. In east Australia, the observed azimuthal anisotropy can be attributed to either APM induced simple shear or lithospheric fabric parallel to the strike of the orogenic belts. The observed spatial variations of the seismic azimuthal anisotropy, when combined with results from depth estimation utilizing the spatial coherency of the splitting parameters and seismic tomography studies, suggest that the azimuthal anisotropy in Australia can mostly be related to simple shear in the rheologically transition layer between the lithosphere and asthenosphere. Non‐APM parallel anisotropy is attributable to modulations of the mantle flow system by undulations of the bottom of the lithosphere, with a spatially variable degree of contribution from lithospheric fabric.

     
    more » « less