skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anisotropy Variations in the Alaska Subduction Zone Based on Shear‐Wave Splitting From Intraslab Earthquakes
Abstract Shear‐wave splitting observations can provide insight into mantle flow, due to the link between the deformation of mantle rocks and their direction‐dependent seismic wave velocities. We identify anisotropy in the Cook Inlet segment of the Alaska subduction zone by analyzing splitting parameters of S waves from local intraslab earthquakes between 50 and 200 km depths, recorded from 2015–2017 and emphasizing stations from the Southern Alaska Lithosphere and Mantle Observation Network experiment. We classify 678 high‐quality local shear‐wave splitting observations into four regions, from northwest to southeast: (L1b) splitting measurements parallel to Pacific plate motion, (L1a) arc‐perpendicular splitting pattern, (L2) sharp transition to arc‐parallel splitting, and (L3) splitting parallel to Pacific plate motion. Forward modeling of splitting from various mantle fabrics shows that no one simple model fully explains the observed splitting patterns. An A‐type olivine fabric with fast direction dipping 45° to the northwest (300°)—aligned with the dipping slab—predicts fast directions that fit L1a observations well, but not L2. The inability of the forward model fabrics to fit all the observed splitting patterns suggests that the anisotropy variations are not due to variable ray angles, but require distinct differences in the anisotropy regime below the arc, forearc, and subducting plate.  more » « less
Award ID(s):
1829447 1829440
PAR ID:
10387763
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
22
Issue:
5
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shear wave splitting is often assumed to be caused by mantle flow or preexisting lithospheric fabrics. We present 2,389 new SKS shear wave splitting observations from 384 broadband stations deployed in Alaska from January 2010 to August 2017. In Alaska, splitting appears to be controlled by the absolute plate motion (APM) of the North American and Pacific plates, the interaction between the two plates, and the geometry of the subducting Pacific‐Yakutat plate. Outside of the subduction zone's influence, the fast directions in northern Alaska parallel the North American APM direction. Fast directions near the Queen Charlotte‐Fairweather transform margin are parallel to the faults and are likely caused by the strike‐slip deformation extending throughout the lithosphere. In the mantle wedge, fast directions are oriented along the strike of the slab with large splitting times and are caused by along‐strike flow in the mantle wedge as the slab provides a barrier to flow. South of the Alaska Peninsula, the fast directions are parallel to the trench regardless of sea floor fabric, indicating along strike flow under the Pacific plate. Under the Kenai Peninsula, the complex flat slab geometry may cause subslab flow to be parallel to Pacific APM direction or to the North America‐Pacific relative motion. 
    more » « less
  2. We utilized shear wave splitting analysis of teleseismic SKS, SKKS, and PKS phases to infer upper mantle deformational fabrics across a substantial area of Southeast Asia, where splitting measurements were previously limited. We used newly available permanent and temporary broadband seismic networks deployed across the Indo-Burma subduction zone and the eastern Indochina peninsula. The resulting 492 well-constrained splitting and 654 null measurements from 185 stations reveal clear large-scale patterns in the mantle deformational fabrics in response to the highly oblique active subduction and a large transform plate boundary. We identified two distinct domains of mantle deformation fabrics in the western Burma microplate and the eastern Indochina peninsula. In the former, trench parallel N-S fast polarization directions with an average lag time (δt) of 1.9 s are observed beneath the Indo-Burman Ranges. We suggest the observed splitting is partly due to anisotropy in the sub-slab region and relates to shear induced by the north moving Indian plate. The lithospheric fabric within the Indo-Burman Ranges and underlying subducting slab fabric contribute to produce the observed average δt of 1.9 s. The δt value decreases to an average of 1.0 s towards the back-arc until we reach the dextral Sagaing fault. In the second domain, starting approximately 100 km east of the Sagaing fault, we observe a consistent E-W fast direction with an average δt of 1.10 s in the eastern Shan-Thai and Indochina blocks. We interpret the E-W fabric as due to the deformation associated with the westward spreading of the Hainan mantle plume, possibly driven by overriding plate motion. Low velocities in the shallow mantle and late Cenozoic intraplate volcanism in this region support the plume-driven asthenospheric flow model in the Indochina peninsula. The sudden transition of the fast polarization direction from N-S to E-W along the eastern edge of the Burma microplate indicates the Sagaing fault acts as a mantle flow boundary between the subduction dominated trench parallel flow to the west and plume induced asthenospheric flow to the east. We also observed no net splitting beneath the Bengal basin which is most likely due to the presence of frozen vertical fabric resulting from the Kerguelen plume activity during Early Cretaceous. 
    more » « less
  3. Abstract We examine upper mantle anisotropy across the Antarctic continent using 102 new shear wave splitting measurements obtained from teleseismic SKS, SKKS, and PKS phases combined with 107 previously published results. For the new measurements, an eigenvalue technique is used to estimate the fast polarization direction and delay time for each phase arrival, and high‐quality measurements are stacked to determine the best‐fit splitting parameters at each seismic station. The ensemble of splitting measurements shows largely NE‐SW‐oriented fast polarization directions across Antarctica, with a broadly clockwise rotation in polarization directions evident moving from west to east across the continent. Although the first‐order pattern of NE‐SW‐oriented polarization directions is suggestive of a single plate‐wide source of anisotropy, we argue the observed pattern of anisotropy more likely arises from regionally variable contributions of both lithospheric and sub‐lithospheric mantle sources. Anisotropy observed in the interior of East Antarctica, a region underlain by thick lithosphere, can be attributed to relict fabrics associated with Precambrian tectonism. In contrast, anisotropy observed in coastal East Antarctica, the Transantarctic Mountains (TAM), and across much of West Antarctica likely reflects both lithospheric and sub‐lithospheric mantle fabrics. While sub‐lithospheric mantle fabrics are best associated with either plate motion‐induced asthenospheric flow or small‐scale convection, lithospheric mantle fabrics in coastal East Antarctica, the TAM, and West Antarctica generally reflect Jurassic—Cenozoic tectonic activity. 
    more » « less
  4. Abstract To investigate the effects of a slab edge and varying slab geometry on the mantle flow systems beneath south central Alaska, a total of 971 pairs of teleseismic shear wave (SKS, SKKS, and PKS) and 65 pairs of local S wave splitting parameters (fast orientations and splitting times) are measured using data from the USArray and other networks. The Pacific‐Yakutat slab edge separates two regions with different characteristics of the splitting measurements. The area to the west of the slab edge has greater splitting times and mostly trench parallel fast orientations, and the area to the east is dominated by smaller splitting times and spatially varying fast orientations. The spatial distribution of the splitting parameters and results of anisotropy layering and depth analyses can be explained by a model involving three flow systems. The sub‐slab flow initially entraining with the shallow‐dipping Yakutat slab deflects to a trench‐parallel direction due to slab retreat and an increase in slab dip, and flows northeastward toward the slab edge, where it splits into two branches. The first branch enters the mantle wedge as a toroidal flow and flows southwestward along the slab, and the second branch continues approximately eastward. The flowlines of the toroidal and continued flow systems are approximately orthogonal to each other in the vicinity of the slab edge, producing the observed small splitting times and spatially varying fast orientations. 
    more » « less
  5. Abstract The style of convective force transmission to plates and strain‐localization within and underneath plate boundaries remain debated. To address some of the related issues, we analyze a range of deformation indicators in southern California from the surface to the asthenosphere. Present‐day surface strain rates can be inferred from geodesy. At seismogenic crustal depths, stress can be inferred from focal mechanisms and splitting of shear waves from local earthquakes via crack‐dependent seismic velocities. At greater depths, constraints on rock fabrics are obtained from receiver function anisotropy,PnandPtomography, surface wave tomography, and splitting ofSKSand other teleseismic core phases. We construct a synthesis of deformation‐related observations focusing on quantitative comparisons of deformation style. We find consistency with roughly N‐S compression and E‐W extension near the surface and in the asthenospheric mantle. However, all lithospheric anisotropy indicators show deviations from this pattern.Pnfast axes and dipping foliations from receiver functions are fault‐parallel with no localization to fault traces and match post‐Farallon block rotations in the Western Transverse Ranges. Local shear wave splitting orientations deviate from the stress orientations inferred from focal mechanisms in significant portions of the area. We interpret these observations as an indication that lithospheric fabric, developed during Farallon subduction and subsequent extension, has not been completely reset by present‐day transform motion and may influence the current deformation behavior. This provides a new perspective on the timescales of deformation memory and lithosphere‐asthenosphere interactions. 
    more » « less