skip to main content


Search for: All records

Award ID contains: 1853541

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The hitherto elusive monobridged Ge(μ‐H)GeH (X1A′) molecule was prepared in the gas phase by bimolecular reaction of atomic germanium with germane (GeH4). Electronic structure calculations revealed that this reaction commenced on the triplet surface with the formation of a van der Waals complex, followed by insertion of germanium into a germanium‐hydrogen bond over a submerged barrier to form the triplet digermanylidene intermediate (HGeGeH3); the latter underwent intersystem crossing from the triplet to the singlet surface. On the singlet surface, HGeGeH3predominantly isomerized through two successive hydrogen shifts prior to unimolecular decomposition to Ge(μ‐H)GeH isomer, which is in equilibrium with the vinylidene‐type (H2GeGe) and dibridged (Ge(μ‐H2)Ge) isomers. This reaction leads to the formation of cyclic dinuclear germanium molecules, which do not exist on the isovalent C2H2surface, thus deepening our understanding of the role of nonadiabatic reaction dynamics in preparing nonclassical, hydrogen‐bridged isomers carrying main group XIV elements.

     
    more » « less
  2. Abstract

    The chemical dynamics of the elementary reaction of ground state atomic silicon (Si;3P) with germane (GeH4; X1A1) were unraveled in the gas phase under single collision condition at a collision energy of 11.8±0.3 kJ mol−1exploiting the crossed molecular beams technique contemplated with electronic structure calculations. The reaction follows indirect scattering dynamics and is initiated through an initial barrierless insertion of the silicon atom into one of the four chemically equivalent germanium‐hydrogen bonds forming a triplet collision complex (HSiGeH3;3i1). This intermediate underwent facile intersystem crossing (ISC) to the singlet surface (HSiGeH3;1i1). The latter isomerized via at least three hydrogen atom migrations involving exotic, hydrogen bridged reaction intermediates eventually leading to the H3SiGeH isomeri5. This intermediate could undergo unimolecular decomposition yielding the dibridged butterfly‐structured isomer1p1(Si(μ‐H2)Ge) plus molecular hydrogen through a tight exit transition state. Alternatively, up to two subsequent hydrogen shifts toi6andi7, followed by fragmentation of each of these intermediates, could also form1p1(Si(μ‐H2)Ge) along with molecular hydrogen. The overall non‐adiabatic reaction dynamics provide evidence on the existence of exotic dinuclear hydrides of main group XIV elements, whose carbon analog structures do not exist.

     
    more » « less
  3. Abstract

    The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium‐hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen‐bridged germylidynesilane intermediate (H3Si(μ‐H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon‐germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon‐germanium species at the microscopic level exploiting crossed molecular beams.

     
    more » « less
  4. Abstract

    The identification of silicon‐substituted, complex organics carrying multiple functional groups by classical infrared spectroscopy is challenging because the group frequencies of functional groups often overlap. Photoionization (PI) reflectron time‐of‐fight mass spectrometry (ReTOF‐MS) in combination with temperature‐programmed desorption (TPD) holds certain advantages because molecules are identified after sublimation from the matrix into in the gas phase based on distinct ionization energies and sublimation temperatures. In this study, we reveal the detection of 1‐silaglycolaldehyde (HSiOCH2OH), 2‐sila‐acetic acid (H3SiCOOH), and 1,2‐disila‐acetaldehyde (H3SiSiHO)—the silicon analogues of the well‐known glycolaldehyde (HCOCH2OH), acetic acid (H3CCOOH), and acetaldehyde (H3CCHO), in the gas phase after preparation in silane (SiH4)–carbon dioxide ices exposed to energetic electrons and subliming the neutral reaction products formed within the ices into the gas phase.

     
    more » « less
  5. Silicon monoxide (SiO) is classified as a key precursor and fundamental molecular building block to interstellar silicate nanoparticles, which play an essential role in the synthesis of molecular building blocks connected to the Origins of Life. In the cold interstellar medium, silicon monoxide is of critical importance in initiating a series of elementary chemical reactions leading to larger silicon oxides and eventually to silicates. To date, the fundamental formation mechanisms and chemical dynamics leading to gas phase silicon monoxide have remained largely elusive. Here, through a concerted effort between crossed molecular beam experiments and electronic structure calculations, it is revealed that instead of forming highly-stable silicon dioxide (SiO 2 ), silicon monoxide can be formed via a barrierless, exoergic, single-collision event between ground state molecular oxygen and atomic silicon involving non-adiabatic reaction dynamics through various intersystem crossings. Our research affords persuasive evidence for a likely source of highly rovibrationally excited silicon monoxide in cold molecular clouds thus initiating the complex chain of exoergic reactions leading ultimately to a population of silicates at low temperatures in our Galaxy. 
    more » « less