skip to main content


Title: Soil Quality as a Key Factor in Producing Vegetables for Home Consumption—A Case Study of Urban Allotments in Gorzów Wielkopolski (Poland)
The aim of the study was to analyse the quality of soil in urban allotment gardens in the context of the production of home-grown vegetables. The study was conducted on six allotment gardens (31 individual plots) in Gorzów Wielkopolski, a medium-sized Polish city with an average level of industrialisation. The following soil characteristics were analysed: pH, electric conductivity, organic matter, organic carbon, humus, total nitrogen, C:N ratio, NH4+-N, NO3-N−, P, K, Ca, Mg, SO4−-S, Cl, Na, Fe, Cu, Zn, Mn, Ni, Cr, Cd, Pb. The analyses showed that the soils were abundant in necessary nutrients for vegetable growing. They had high content of calcium, magnesium, and phosphorus. However, the soil pH in areas of vegetable cropping was too high. The content of toxic heavy metals—cadmium (0.22–0.59 mg∙kg−1 d.m.) and lead (3.46–16.89 mg∙kg−1 d.m.)—was within the acceptable limits. Nevertheless, the chemical analysis of carrots used as test vegetables showed that the permissible limits of cadmium and lead content in their roots were exceeded. The excessive uptake of these toxic metals can be reduced by lowering the soil pH and applying organic carbon to the soil.  more » « less
Award ID(s):
1829639
NSF-PAR ID:
10373901
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Agronomy
Volume:
11
Issue:
9
ISSN:
2073-4395
Page Range / eLocation ID:
1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urban community gardens have increased in prevalence as a means to generate fresh fruits and vegetables, including in areas lacking access to healthy food options. However, urban soils may have high levels of toxic heavy metals, including lead and cadmium and the metalloid arsenic, which can lead to severe health risks. In this study, fruit and vegetable samples grown at an urban community garden in southeastern San Diego, the Ocean View Growing Grounds, were sampled repeatedly over a four‐year time period in order to measure potential contamination of toxic heavy metals and metalloids and to develop solutions for this problem. Metal nutrient, heavy metal, and metalloid concentrations were monitored in the leaf and fruit tissues of fruit trees over the sampling period. Several of the fruit trees showed uptake of lead in the leaf samples, with Black Mission fig measuring 0.843–1.531 mg/kg dry weight and Mexican Lime measuring 1.103–1.522 mg/kg dry weight over the sampling period. Vegetables that were grown directly in the ground at this community garden and surrounding areas showed arsenic, 0.80 + 0.073 mg/kg dry weight for Swiss chard, and lead, 0.84 ± 0.404 mg/kg dry weight for strawberries, in their edible tissues. The subsequent introduction of raised beds with uncontaminated soil is described, which eliminated any detectable heavy metal or metalloid contamination in these crops during the monitoring period. Recommendations for facilitating the monitoring of edible tissues and for reducing risk are discussed, including introduction of raised beds and collaborations with local universities and research groups.

     
    more » « less
  2. To trace the phosphorus (P) and potassium (K) content in flooded rice (Oryza sativa L), 14 rice cultivars commonly grown in the Southern United States were evaluated for their P and K concentration in tissue and grain. Field experiments were conducted at two locations in Everglades Agriculture Area (EAA), where flooded rice was cultivated on organic Histosols. Soil pH and Mehlich-3 phosphorus (M3P) were significantly different between locations. At Site I, soil pH, M3P, and Mehlich-3 potassium (M3K) varied in the range of 6.8–7.1, 21.4–36.4 mg kg−1, and 53.9–151.0 mg kg−1, respectively. At Site II, soil pH, M3P and M3K varied in the range of 6.9–7.3, 11.2–20.5 mg kg−1, and 64.8–104.1 mg kg−1, respectively. Stem potassium was the only measured parameter that was significantly different among rice cultivars at both sites. At Site I and Site II, stem K ranged from 14.2–26.6 mg kg−1 and 10.4–19.4 mg kg−1, respectively. No significant difference in yield among cultivars was observed at Site I, whereas Site II had a significant difference in yield among cultivars. At Site I and Site II, yields ranged from 3745–7587 kg ha−1 and 2627–6406 kg ha−1, respectively. None of the cultivars ranked consistently in the same top and bottom position for each measured parameter. Total phosphorus (TP) concentration was highest in grain, whereas total potassium (TK) concentration was highest in the stem. Results suggest incorporation of rice stem into the soil could potentially add fertilizer back to the soil which helps in fertility management. 
    more » « less
  3. Abstract Background

    Soil moisture, pH, dissolved organic carbon and nitrogen (DOC, DON) are important soil biogeochemical properties in switchgrass (SG) and gamagrass (GG) croplands. Yet their spatiotemporal patterns under nitrogen (N) fertilization have not been studied.

    Aims

    The objective of this study is to investigate the main and interactive effects of N fertilization and bioenergy crop type on central tendencies and spatial heterogeneity of soil moisture, pH, DOC and DON.

    Methods

    Based on a 3‐year long fertilization experiment in Middle Tennessee, USA, 288 samples of top horizon soils (0–15 cm) under three fertilization treatments in SG and GG croplands were collected. The fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha−1in urea) and high N input (HN: 168 kg N ha−1in urea). Soil moisture, pH, DOC and DON were quantified. And their within‐plot variations and spatial distributions were achieved via descriptive and geostatistical methods.

    Results

    Relative to NN, LN significantly increased DOC content in SG cropland. LN also elevated within‐plot spatial heterogeneity of soil moisture, pH, DOC and DON in both croplands though GG showed more evident spatial heterogeneity than SG. Despite the pronounced patterns described above, great plot to plot variations were also revealed in each treatment.

    Conclusion

    This study informs the generally low sensitivity of spatiotemporal responses in soil biogeochemical features to fertilizer amendments in bioenergy croplands. However, the significantly positive responses of DOC under low fertilizer input informed the best practice of optimizing agricultural nutrient amendment.

     
    more » « less
  4. Peña-Fernández, Antonio (Ed.)
    Application of crop residues and biochar have been demonstrated to improve soil biological and chemical properties in agroecosystems. However, the integrated effect of organic amendments and hydrological cycles on soil health indicators are not well understood. In this study, we quantified the impact of hemp residue (HR), hemp biochar (HB), and hardwood biochar (HA) on five hydrolytic enzymes, soil microbial phospholipid (PLFA) community structure, pH, permanganate oxidizable carbon (POXC) soil organic carbon (SOC), and total nitrogen (TN). We compared two soil types, Piedmont and Coastal Plain soils of North Carolina, under (i) a 30-d moisture cycle maintained at 60% water-filled pore space (WFPS) (D-W1), followed by (ii) a 7-day alternate dry-wet cycle for 42 days (D-W2), or (iii) maintained at 60% WFPS for 42 days (D-W3) during an aerobic laboratory incubation. Results showed that HR and HB significantly increased the geometric mean enzyme activity by 1-2-fold in the Piedmont soil under the three moisture cycles and about 1.5-fold under D-W in the Coastal soil. In the presence of HA, the measured soil enzyme activities were significantly lower than control under the moisture cycles in both soil types. The shift in microbial community structure was distinct in the Coastal soil but not in the Piedmont soil. Under D-W2, HR and HB significantly increased POXC (600–700 mg POXC kg -1 soil) in the Coastal soil but not in the Piedmont soil while HA increased nitrate (8 mg kg -1 ) retention in the Coastal soil. The differences in amendment effect on pH SOC, TN, POXC, and nitrate were less distinct in the fine-textured Piedmont soil than the coarse-textured Coastal soil. Overall, the results indicate that, unlike HA, HR and HB will have beneficial effects on soil health and productivity, therefore potentially improving soil’s resilience to changing climate. 
    more » « less
  5. Marsh grasses have been used as efficient tools for phytoremediation and are known to play key roles in maintaining ecosystem functions by reducing the contamination of coastlines. This study was initiated to understand how human activities in wetlands can impact ion-heavy metal concentrations in relation to native and invasive marsh grasses. The study site, Blackbird Creek (BBC) is a tidal wetland that experiences agricultural, fishing, recreational, residential and other anthropogenic activities throughout the year. Heavy metals cadmium, arsenic, and lead in the soils and marsh grasses were monitored along with the ion compositions of soils. The main objective of this study was to understand if the marsh soils containing monotypic stands of native ( Spartina ) and non-native ( Phragmites ) vegetation display similar levels of heavy metals. Differences were observed in the concentrations of heavy metals at study sites with varying marsh vegetation types, and in soils containing vegetation and no vegetation. The soils with dense Spartina and Phragmites stands were anaerobic whereas soil at the boat ramp site was comparatively less anaerobic and also had increased levels of cadmium. Heavy metal concentrations in soil and Phragmites leaves were inversely correlated whereas they were positively correlated in Spartina sites. Electrical conductivity and pH levels in soil also showed increased cadmium and arsenic concentrations. These findings collectively infer that human activities and seasonal changes can increase soil complexities affecting the bioavailability of metals. 
    more » « less