skip to main content

Title: Subseasonal controls of U.S. landfalling tropical cyclones
Abstract Landfalling tropical cyclones (LTCs) are the most devastating disaster to affect the U.S., while the demonstration of skillful subseasonal (between 10 days and one season) prediction of LTCs is less promising. Understanding the mechanisms governing the subseasonal variation of TC activity is fundamental to improving its forecast, which is of critical interest to decision-makers and the insurance industry. This work reveals three localized atmospheric circulation modes with significant 10–30 days subseasonal variations: Piedmont Oscillation (PO), Great America Dipole (GAD), and the Subtropical High ridge (SHR) modes. These modes strongly modulate precipitation, TC genesis, intensity, track, and landfall near the U.S. coast. Compared to their strong negative phases, the U.S. East Coast has 19 times more LTCs during the strong positive phases of PO, and the Gulf Coast experiences 4–12 times more frequent LTCs during the positive phases of GAD and SHR. Results from the GFDL SPEAR model show a skillful prediction of 13, 9, and 22 days for these three modes, respectively. Our findings are expected to benefit the prediction of LTCs on weather timescale and also suggest opportunities exist for subseasonal predictions of LTCs and their associated heavy rainfalls.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subseasonal tropical cyclone (TC) reforecasts from the Community Earth System Model version 2 (CAM6) subseasonal prediction system are examined in this study. We evaluate the modeled TC climatology and the probabilistic forecast skill of basin‐wide TC genesis at weekly temporal resolution. Prediction skill is calculated using the Brier skill score relative to a constant annual mean climatology and to a monthly varying seasonal climatology during TC season. The model captures the observed basin‐wide climatological TC seasonality and spatial distributions at weeks 1–6, but TC genesis is largely underestimated from Week 2 onward. For some basins and lead times, the predicted TC genesis is primarily controlled by the number of TC “seeds” and the mean‐state climate condition. The model has good prediction skill relative to the constant climatology across all the basins and lead times, but is only skillful in the eastern Pacific, North Indian Ocean, and Southern Hemisphere at Week 1 when compared to the seasonal climatology, indicating limited skill in predicting deviations from the seasonal cycle. We find strong modulations of the predicted TC genesis at up to 3 weeks of forecast lead time by the Madden‐Julian Oscillation. The interannual variability of predicted TC genesis and accumulated cyclone energy are skillfully predicted in the North Atlantic and the Northwestern Pacific, with a strong modulation by the El Nino‐Southern Oscillation.

    more » « less
  2. Abstract

    Humans’ essential ability to combat heat stress through sweat-based evaporative cooling is modulated by ambient air temperature and humidity, making humid heat a critical factor for human health. In this study, we relate the occurrence of extreme humid heat in two focus regions to two related modes of intraseasonal climate variability: the Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). In the Persian Gulf and South Asia during the May–June and July–August seasons, wet-bulb temperatures of 28°C are found to be almost twice as likely during certain oscillation phases than in others. Variations in moisture are found, to varying degrees, to be an important ingredient in anomalously high wet-bulb temperatures in all three areas studied, influenced by distinct local circulation anomalies. In the Persian Gulf, weakening of climatological winds associated with the intraseasonal oscillation’s propagating center of convection allows for anomalous onshore advection of humid air. Anomalously high wet-bulb temperatures in the northwestern region of South Asia are closely aligned with positive specific humidity anomalies associated with the convectively active phase of the oscillation. On the southeastern coast of India, high wet-bulb temperatures are associated with convectively inactive phases of the intraseasonal oscillation, suggesting that they may be driven by increased surface insolation and reduced evaporative cooling during monsoon breaks. Our results aid in building a foundation for subseasonal predictions of extreme humid heat in regions where it is highly impactful.

    Significance Statement

    Understanding when and why extreme humid heat occurs is essential for informing public health efforts protecting against heat stress. This analysis works to improve our understanding of humid heat variability in two at-risk regions, the Persian Gulf and South Asia. By exploring how subseasonal oscillations affect daily extreme events, this analysis helps bridge the prediction gap between weather and climate. We find that extreme humid heat is more than twice as likely during specific phases of these oscillations than in others. Extremes depend to different extents upon combinations of above-average temperature and humidity. This new knowledge of the regional drivers of humid heat variability is important to better prepare for the increasingly widespread health and socioeconomic impacts of heat stress.

    more » « less
  3. null (Ed.)
    Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks. 
    more » « less
  4. Abstract

    The impact of the quasi‐biennial oscillation (QBO) on the prediction of tropical intraseasonal convection, including the Madden Julian Oscillation (MJO) and Boreal Summer Intraseasonal Oscillation (BSISO), is assessed in the WMO Subseasonal to Seasonal (S2S) forecast database using the real‐time OLR based MJO (ROMI) index. It is shown that the ROMI prediction skill for the boreal winter MJO, measured by the maximum time at which the anomaly correlation coefficient exceeds 0.6, is higher by 5 to 10 days in the QBO easterly phase than its westerly phase. This difference occurs even in models with low tops and poorly resolved stratospheres. MJO predictability, as measured by signal to noise ratio in the S2S ensemble, also shows a similar difference between the two QBO phases, and results from a simple linear regression model show consistent behavior as well. Analysis of the ROMI index derived from observations indicates that the MJO is more coherent and stronger in the QBO easterly phase than in the westerly phase. These results suggest that the skill dependence on QBO phase results from the initial state of the MJO, the regularity of its propagation in the verifying observations, or most likely a combination of the two, but not on an actual stratospheric influence on the MJO within the model simulations. In contrast to the robust QBO‐MJO connection in boreal winter, the BSISO prediction skill exhibited by the S2S models in boreal summer is greater in the QBOwesterlyphase than in theeasterlyphase during the 1999 to 2010 period. This is consistent with the observation that BSISO OLR anomalies are stronger in the QBO westerly phase during that period. However, this relationship between the QBO and BSISO in boreal summer changes in recent decades: BSISO is weaker in QBO westerly than easterly during 1979–2000. Correspondingly, the QBO impact on BSISO prediction in boreal summer also reverses in that period as well in a statistical model, whereas this statistical model shows a consistent QBO impact on MJO prediction in boreal winter over the past four decades.

    more » « less
  5. Abstract

    Tropical cyclone (TC) landfalls over the U.S. mid-Atlantic region, which include the so-called Sandy-like, or westward-curving, tracks, are among the most infrequent landfalls along the U.S. East Coast. However, when these events do occur, the resulting economic and societal consequences can be devastating. A recent example is Hurricane Sandy in 2012. Multimodel ensemble seasonal hindcasts conducted with a high-atmospheric-resolution coupled prediction system based on the ECMWF operational model (Project Minerva) are used here to compile the statistics of these rare events. Minerva hindcasts are found to exhibit skill in reproducing climatological characteristics of the mid-Atlantic TC landfalls particularly at the highest atmospheric horizontal spectral resolution of T1279 (16-km grid spacing). Historical forecasts are further interrogated to identify regional and large-scale environmental conditions associated with these rare TC tracks to better quantify their predictability on synoptic time scales, and their dependence on model resolution. Evolution of the large-scale atmospheric flow patterns leading to mid-Atlantic TC landfalls is analyzed using local finite-amplitude wave activity (LWA). We have identified large-amplitude quasi-stationary features in the LWA and sea surface temperature (SST) anomaly distributions that persist up to about a week leading to these land-falling events. A statistical model utilizing indices based on the LWA and SST anomalies as predictors is developed that exhibits skill (mostly at T1279) in predicting mid-Atlantic TC landfalls several days in advance. Implications of these results for longer time-scale predictions of mid-Atlantic TC landfalls including climate change projections are discussed.

    more » « less