skip to main content

Title: Skillful All-Season S2S Prediction of U.S. Precipitation Using the MJO and QBO
Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Weather and Forecasting
Page Range / eLocation ID:
2179 to 2198
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Studies have indicated exaggerated Maritime Continent (MC) barrier effect in simulations of the Madden–Julian oscillation (MJO), a dominant source of subseasonal predictability in the tropics. This issue has plagued the modeling and operational forecasting communities for decades, while the sensitivity of MC barrier on MJO predictability has not been addressed quantitatively. In this study, perfect-model ensemble forecasts are conducted with an aquaplanet configuration of the Community Earth System Model version 2 (CESM2) in which both basic state and tropical modes of variability are reasonably simulated with a warm pool–like SST distribution. When water-covered terrain mimicking MC landmasses is added to the warm pool–like SST framework, the eastward propagation of the MJO is disturbed by the prescribed MC aqua-mountain. The MJO predictability estimate with the perfect-model experiment is about 6 weeks but reduces to about 4 weeks when the MJO is impeded by the MC aqua-mountain. Given that the recent operational forecasts show an average of 3–4 weeks of MJO prediction skill, we can conclude that improving the MJO propagation crossing the MC could improve the MJO skill to 5–6 weeks, close to the potential predictability found in this study (6 weeks). Therefore, more effort toward understanding and improving the MJO propagation is needed to enhance the MJO and MJO-related forecasts to improve the subseasonal-to-seasonal prediction.

    more » « less
  2. Abstract A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires attention to the standing MJO given its large gap with its potential predictability (38 days). The slow-propagating MJO detours southward when traversing the Maritime Continent (MC), and confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill between these two QBO phases. The SPEAR model shows its capability, beyond the propagation, in predicting their initiation for different types of MJO along with discrete precursory convection anomalies. The SPEAR model skillfully predicts the observed distinct teleconnections over the North Pacific and North America related to the standing, jumping, and fast-propagating MJO, but not the slow-propagating MJO. These findings highlight the complexities and challenges of incorporating MJO prediction into the operational prediction of meteorological variables. 
    more » « less
  3. Abstract

    Prediction systems to enable Earth system predictability research on the subseasonal time scale have been developed with the Community Earth System Model, version 2 (CESM2) using two configurations that differ in their atmospheric components. One system uses the Community Atmosphere Model, version 6 (CAM6) with its top near 40 km, referred to as CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version 6 (WACCM6) whose top extends to ∼140 km, and it includes fully interactive tropospheric and stratospheric chemistry [CESM2(WACCM6)]. Both systems are utilized to carry out subseasonal reforecasts for the 1999–2020 period following the Subseasonal Experiment’s (SubX) protocol. Subseasonal prediction skill from both systems is compared to those of the National Oceanic and Atmospheric Administration CFSv2 and European Centre for Medium-Range Weather Forecasts (ECMWF) operational models. CESM2(CAM6) and CESM2(WACCM6) show very similar subseasonal prediction skill of 2-m temperature, precipitation, the Madden–Julian oscillation, and North Atlantic Oscillation to its previous version and to the NOAA CFSv2 model. Overall, skill of CESM2(CAM6) and CESM2(WACCM6) is a little lower than that of the ECMWF system. In addition to typical output provided by subseasonal prediction systems, CESM2 reforecasts provide comprehensive datasets for predictability research of multiple Earth system components, including three-dimensional output for many variables, and output specific to the mesosphere and lower-thermosphere (MLT) region from CESM2(WACCM6). It is shown that sudden stratosphere warming events, and the associated variability in the MLT, can be predicted ∼10 days in advance. Weekly real-time forecasts and reforecasts with CESM2(CAM6) and CESM2(WACCM6) are freely available.

    Significance Statement

    We describe here the design and prediction skill of two subseasonal prediction systems based on two configurations of the Community Earth System Model, version 2 (CESM2): CESM2 with the Community Atmosphere Model, version 6 [CESM2(CAM6)] and CESM 2 with Whole Atmosphere Community Climate Model, version 6 [CESM2(WACCM6)] as its atmospheric component. These two systems provide a foundation for community-model based subseasonal prediction research. The CESM2(WACCM6) system provides a novel capability to explore the predictability of the stratosphere, mesosphere, and lower thermosphere. Both CESM2(CAM6) and CESM2(WACCM6) demonstrate subseasonal surface prediction skill comparable to that of the NOAA CFSv2 model, and a little lower than that of the ECMWF forecasting system. CESM2 reforecasts provide a comprehensive dataset for predictability research of multiple aspects of the Earth system, including the whole atmosphere up to 140 km, land, and sea ice. Weekly real-time forecasts, reforecasts, and models are publicly available.

    more » « less
  4. Abstract

    Subseasonal forecasting—predicting temperature and precipitation 2 to 6 weeks ahead—is critical for effective water allocation, wildfire management, and drought and flood mitigation. Recent international research efforts have advanced the subseasonal capabilities of operational dynamical models, yet temperature and precipitation prediction skills remain poor, partly due to stubborn errors in representing atmospheric dynamics and physics inside dynamical models. Here, to counter these errors, we introduce anadaptive bias correction(ABC) method that combines state-of-the-art dynamical forecasts with observations using machine learning. We show that, when applied to the leading subseasonal model from the European Centre for Medium-Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by 60–90% (over baseline skills of 0.18–0.25) and precipitation forecasting skill by 40–69% (over baseline skills of 0.11–0.15) in the contiguous U.S. We couple these performance improvements with a practical workflow to explain ABC skill gains and identify higher-skill windows of opportunity based on specific climate conditions.

    more » « less
  5. Abstract

    Subseasonal tropical cyclone (TC) reforecasts from the Community Earth System Model version 2 (CAM6) subseasonal prediction system are examined in this study. We evaluate the modeled TC climatology and the probabilistic forecast skill of basin‐wide TC genesis at weekly temporal resolution. Prediction skill is calculated using the Brier skill score relative to a constant annual mean climatology and to a monthly varying seasonal climatology during TC season. The model captures the observed basin‐wide climatological TC seasonality and spatial distributions at weeks 1–6, but TC genesis is largely underestimated from Week 2 onward. For some basins and lead times, the predicted TC genesis is primarily controlled by the number of TC “seeds” and the mean‐state climate condition. The model has good prediction skill relative to the constant climatology across all the basins and lead times, but is only skillful in the eastern Pacific, North Indian Ocean, and Southern Hemisphere at Week 1 when compared to the seasonal climatology, indicating limited skill in predicting deviations from the seasonal cycle. We find strong modulations of the predicted TC genesis at up to 3 weeks of forecast lead time by the Madden‐Julian Oscillation. The interannual variability of predicted TC genesis and accumulated cyclone energy are skillfully predicted in the North Atlantic and the Northwestern Pacific, with a strong modulation by the El Nino‐Southern Oscillation.

    more » « less