skip to main content


Title: Wavefront profiling via correlation of GLAO open loop telemetry
Adaptive Optics (AO) used in ground based observatories can be strengthened in both design and algorithms by a more detailed understanding of the atmosphere they seek to correct. Nowhere is this more true than on Maunakea, where a clearer profile of the atmosphere informs AO system development from the small separations of Extreme AO (ExAO) to the wide field Ground Layer AO (GLAO). Employing telemetry obtained from the ımaka GLAO demonstrator on the University of Hawaii 2.2-meter telescope, we apply a wind profiling method that identifies turbulent layer velocities through spatial-temporal cross correlations of multiple wavefront sensors (WFSs). We compare the derived layer velocities with nearby wind anemometer data and meteorological model predictions of the upper wind speeds and discuss similarities and differences. The strengths and limitations of this profiling method are evaluated through successful recovery of injected, simulated layers into real telemetry. We detail the profilers’ results, including the percentage of data with viable estimates, on four characteristic ımaka observing runs on open loop telemetry throughout both winter and summer targets. We report on how similar layers are to external measures, the confidence of these results, and the potential for future use of this technique on other multi conjugate AO systems.  more » « less
Award ID(s):
1910552
NSF-PAR ID:
10373997
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Schmidt, Dirk; Schreiber, Laura; Vernet, Elise
Date Published:
Journal Name:
Proc. SPIE 12185, Adaptive Optics Systems VIII
Volume:
12185
Page Range / eLocation ID:
222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    Early adaptive optics (AO) systems were designed with knowledge of a site’s distribution of Fried parameter (r0) and Greenwood time delay (τ0) values. Recent systems have leveraged additional knowledge of the distribution of turbulence with altitude. We present measurements of the atmosphere above Maunakea, Hawaii and how the temporal properties of the turbulence relate to tomographic reconstructions. We combine archival telemetry collected by ‘imaka—a ground layer AO (GLAO) system on the UH88” telescope—with data from the local weather towers, weather forecasting models, and weather balloon launches, to study how frequently one can map a turbulent layer’s wind vector to its altitude. Finally, we present the initial results of designing a new GLAO control system based off of these results, an approach we have named “temporal tomography.” 
    more » « less
  2. Abstract

    Sporadic‐E (Es) are thin layers of enhanced ionization observed in the E‐region, typically between 95 and 120 km altitude. Es plays an important role in controlling the dynamics of the upper atmosphere and it is necessary to understand the geophysical factors influencing Es from both the scientific and operational perspectives. While the wind‐shear theory is widely accepted as an important mechanism responsible for the generation of Es, there are still gaps in the current state of our knowledge. For example, we are yet to determine precisely how changes in the dynamics of horizontal winds impact the formation, altitude, and destruction of Es layers. In this study, we report results from a coordinated experimental campaign between the Millstone Hill Incoherent Scatter Radar, the SuperDARN radar at Blackstone, and the Millstone Hill Digisonde to monitor the dynamics of mid‐latitude Es layers. We report observations during a 15‐hr window between 13 UT on 3 June 2022 and 4 UT on 4 June 2022, which was marked by the presence of a strong Es layer. We find that the height of the Es layer is collocated with strong vertical shears in atmospheric tides and that the zonal wind shears play a more important role than meridional wind shears in generating Es, especially at lower altitudes. Finally, we show that in the presence of Es, SuperDARN ground backscatter moves to closer ranges, and the height and critical frequency of the Es layer have a significant impact on the location and intensity of HF ground scatter.

     
    more » « less
  3. Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, USA, active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include radar wind profilers, microwave radiometers, atmospheric emitted radiance interferometers, ceilometers, high spectral resolution lidars, Doppler lidars, and collaborative lower-atmospheric mobile profiling systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary layer depth estimations is also investigated. We found that while all instruments are overall able to provide reasonable boundary layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, radar wind profilers perform well during cloud-free conditions, and microwave radiometers and atmospheric emitted radiance interferometers have a very good agreement during all conditions but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from ceilometers and high spectral resolution lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the collaborative lower atmospheric mobile profiling systems can be constricted to a limited height range in low-aerosol conditions. 
    more » « less
  4. The planetary boundary layer height (PBLH) is an essential parameter for weather forecasting and climate modeling. The primary methods for obtaining the PBLH include radiosonde measurements of atmospheric parameters and lidar measurements, which track aerosol layers in the lower atmosphere. Radiosondes provide the parameters to determine the PBLH but cannot monitor changes over a diurnal cycle. Lidar instruments can track the temporal variability of the PBLH and account for spatial variability when operated in a network configuration. The networkable micropulse DIAL (MPD) instruments for thermodynamic profiling are based on diode-laser technology that is eye-safe and cost-effective and has demonstrated long-term autonomous operation. We present a retrieval algorithm for determining the PBLH from the quantitative aerosol profiling capability of the high spectral resolution channel of the MPD. The PBLH is determined using a Haar wavelet transform (HWT) method that tracks aerosol layers in the lower atmosphere. The PBLH from the lidar is compared with the PBLH determined from potential temperature profiles from radiosondes. In many cases, good agreement among the PBLH retrievals was seen. However, the radiosonde retrieval often missed the lowest inversion layer when several layers were present, while the HWT could track the lowest layer. 
    more » « less
  5. Abstract

    This study examines the possibility that supercell tornado forecasts could be improved by utilizing the storm-relative helicity (SRH) in the lowest few hundred meters of the atmosphere (instead of much deeper layers). This hypothesis emerges from a growing body of literature linking the near-ground wind profile to the organization of the low-level mesocyclone and thus the probability of tornadogenesis. This study further addresses the ramifications of near-ground SRH to the skill of the significant tornado parameter (STP), which is probably the most commonly used environmental indicator for tornadic thunderstorms. Using a sample of 20 194 severe, right-moving supercells spanning a 13-yr period, sounding-derived parameters were compared using forecast verification metrics, emphasizing a high probability of detection for tornadic supercells while minimizing false alarms. This climatology reveals that the kinematic components of environmental profiles are more skillful at discriminating significantly tornadic supercells from severe, nontornadic supercells than the thermodynamic components. The effective-layer SRH has by far the greatest forecast skill among the components of the STP, as it is currently defined. However, using progressively shallower layers for the SRH calculation leads to increasing forecast skill. Replacing the effective-layer SRH with the 0–500 m AGL SRH in the formulation of STP increases the number of correctly predicted events by 8% and decreases the number of missed events and false alarms by 18%. These results provide promising evidence that forecast parameters can still be improved through increased understanding of the environmental controls on the processes that govern tornado formation.

     
    more » « less