skip to main content


Title: Local SGD Optimizes Overparameterized Neural Networks in Polynomial Time
In this paper we prove that Local (S)GD (or FedAvg) can optimize deep neural networks with Rectified Linear Unit (ReLU) activation function in polynomial time. Despite the established convergence theory of Local SGD on optimizing general smooth functions in communication-efficient distributed optimization, its convergence on non-smooth ReLU networks still eludes full theoretical understanding. The key property used in many Local SGD analysis on smooth function is gradient Lipschitzness, so that the gradient on local models will not drift far away from that on averaged model. However, this decent property does not hold in networks with non-smooth ReLU activation function. We show that, even though ReLU network does not admit gradient Lipschitzness property, the difference between gradients on local models and average model will not change too much, under the dynamics of Local SGD. We validate our theoretical results via extensive experiments. This work is the first to show the convergence of Local SGD on non-smooth functions, and will shed lights on the optimization theory of federated training of deep neural networks.  more » « less
Award ID(s):
1956276
NSF-PAR ID:
10374022
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Artificial Intelligence and Statistics (AISTAT)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern neural networks are often quite wide, causing large memory and computation costs. It is thus of great interest to train a narrower network. However, training narrow neural nets remains a challenging task. We ask two theoretical questions: Can narrow networks have as strong expressivity as wide ones? If so, does the loss function exhibit a benign optimization landscape? In this work, we provide partially affirmative answers to both questions for 1-hidden-layer networks with fewer than n (sample size) neurons when the activation is smooth. First, we prove that as long as the width m>=2n=d (where d is the input dimension), its expressivity is strong, i.e., there exists at least one global minimizer with zero training loss. Second, we identify a nice local region with no local-min or saddle points. Nevertheless, it is not clear whether gradient descent can stay in this nice region. Third, we consider a constrained optimization formulation where the feasible region is the nice local region, and prove that every KKT point is a nearly global minimizer. It is expected that projected gradient methods converge to KKT points under mild technical conditions, but we leave the rigorous convergence analysis to future work. Thorough numerical results show that projected gradient methods on this constrained formulation significantly outperform SGD for training narrow neural nets. 
    more » « less
  2. We explore convergence of deep neural networks with the popular ReLU activation function, as the depth of the networks tends to infinity. To this end, we introduce the notion of activation domains and activation matrices of a ReLU network. By replacing applications of the ReLU activation function by multiplications with activation matrices on activation domains, we obtain an explicit expression of the ReLU network. We then identify the convergence of the ReLU networks as convergence of a class of infinite products of matrices. Sufficient and necessary conditions for convergence of these infinite products of matrices are studied. As a result, we establish necessary conditions for ReLU networks to converge that the sequence of weight matrices converges to the identity matrix and the sequence of the bias vectors converges to zero as the depth of ReLU networks increases to infinity. Moreover, we obtain sufficient conditions in terms of the weight matrices and bias vectors at hidden layers for pointwise convergence of deep ReLU networks. These results provide mathematical insights to convergence of deep neural networks. Experiments are conducted to mathematically verify the results and to illustrate their potential usefulness in initialization of deep neural networks. 
    more » « less
  3. Meila, Marina ; Zhang, Tong (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks. 
    more » « less
  4. null (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to over-paramterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. 
    more » « less
  5. null (Ed.)
    The nonlinearity of activation functions used in deep learning models is crucial for the success of predictive models. Several simple nonlinear functions, including Rectified Linear Unit (ReLU) and Leaky-ReLU (L-ReLU) are commonly used in neural networks to impose the nonlinearity. In practice, these functions remarkably enhance the model accuracy. However, there is limited insight into the effects of nonlinearity in neural networks on their performance. Here, we investigate the performance of neural network models as a function of nonlinearity using ReLU and L-ReLU activation functions in the context of different model architectures and data domains. We use entropy as a measurement of the randomness, to quantify the effects of nonlinearity in different architecture shapes on the performance of neural networks. We show that the ReLU nonliearity is a better choice for activation function mostly when the network has sufficient number of parameters. However, we found that the image classification models with transfer learning seem to perform well with L-ReLU in fully connected layers. We show that the entropy of hidden layer outputs in neural networks can fairly represent the fluctuations in information loss as a function of nonlinearity. Furthermore, we investigate the entropy profile of shallow neural networks as a way of representing their hidden layer dynamics. 
    more » « less