Nitrogen (N) fertilizer use is rapidly intensifying on tropical croplands and has the potential to increase emissions of the greenhouse gas, nitrous oxide (N2O). Since about 2005 Mato Grosso (MT), Brazil has shifted from single-cropped soybeans to double-cropping soybeans with maize, and now produces 1.5% of the world's maize. This production shift required an increase in N fertilization, but the effects on N2O emissions are poorly known. We calibrated the process-oriented biogeochemical DeNitrification-DeComposition (DNDC) model to simulate N2O emissions and crop production from soybean and soybean-maize cropping systems in MT. After model validation with field measurements and adjustments for hydrological properties of tropical soils, regional simulations suggested N2O emissions from soybean-maize cropland increased almost fourfold during 2001–2010, from 1.1 ± 1.1 to 4.1 ± 3.2 Gg 1014 N-N2O. Model sensitivity tests showed that emissions were spatially and seasonably variable and especially sensitive to soil bulk density and carbon content. Meeting future demand for maize using current soybean area in MT might require either (a) intensifying 3.0 million ha of existing single soybean to soybean-maize or (b) increasing N fertilization to ~180 kg N ha−1on existing 2.3 million ha of soybean-maize area. The latter strategy would release ~35% more N2O than the first. Our modifications of the DNDC model will improve estimates of N2O emissions from agricultural production in MT and other tropical areas, but narrowing model uncertainty will depend on more detailed field measurements and spatial data on soil and cropping management.
more »
« less
Double-Cropped Winter Camelina with and without Added Nitrogen: Effects on Productivity and Soil Available Nitrogen
Double cropping winter camelina (Camelina sativa (L.) Crantz) with maize (Zea mays L.) and soybean (Glycine max L. (Merr.)) is a diversification strategy in northern regions. Winter camelina is reported to have low nutrient requirements, but its nitrogen (N) needs are not well understood. Studies on winter camelina without (Study 1) and with (Study 2) N fertilization were used to compare growth, seed yield and quality, and effects on soil N. Study 1 was conducted from 2015 to 2017 at one location and Study 2 was conducted from 2018 to 2020 at two locations. Grain yield was as much as six times higher in Study 2 compared with Study 1; averaged across treatments, winter camelina yielded 1157 kg ha−1 in Study 2 and 556 kg ha−1 without N. Oil and protein content ranged from 26.4 to 27.2% and 19.4 to 27.1%, respectively, in Study 1 and from 31.7 to 35.9% and 14.9 to 20.8%, respectively, in Study 2. N fertilizer increased winter camelina biomass and grain yield and soil N when double cropped with maize and soybean. Our study indicates that grain yield of winter camelina respond positively to N fertilization in a northern location. The drawback of this is the increase in residual soil N, which suggests the need for further research to balance agronomic practices with environmental outcomes.
more »
« less
- Award ID(s):
- 1739191
- PAR ID:
- 10374036
- Date Published:
- Journal Name:
- Agriculture
- Volume:
- 12
- Issue:
- 9
- ISSN:
- 2077-0472
- Page Range / eLocation ID:
- 1477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
At two sites in the North Central USA (Michigan (KBS) and Wisconsin (ARL)), we evaluated the effect of N fertilization on the yield and quality of five perennial bioenergy feedstock cropping systems: (1) switchgrass (Panicum virgatum L.), (2) giant miscanthus (Miscanthus × giganteus), (3) a native grass mixture (5 species), (4) an early successional field (volunteer herbaceous species), and (5) a restored prairie (18 species). In a randomized complete block design with 5 replicates and 2 split plots, N was applied at 0 and 56 kg ha−1 to split plots for each cropping system from 2010 to 2016. No yield response to N was detected in switchgrass at either location in any year. Giant miscanthus exhibited a positive yield response to N at both sites (11% at KBS and 83% at ARL). Nitrogen fertilizer addition significantly reduced glucose (KBS 12.9 and 13.8 g kg−1 year−1, ARL 11.2 and 9.7 g kg−1 year−1) in the native grass mix and restored prairie systems respectively. Nitrogen fertilizer also reduced xylose at KBS in the switchgrasss, native grass mix, and restored prairie (4.9, 7.5, and 5.0 g kg−1 year−1). At ARL, N fertilization reduced xylose levels in switchgrass, giant miscanthus, and restored prairie (7.4, 6.8, and 6.2 g kg−1 year−1) and increased xylose levels in the early successional system (5.0 g kg−1 year−1).more » « less
-
null (Ed.)Abstract Extracellular glycosidases in soil, produced by microorganisms, act as major agents for decomposing labile soil organic carbon (e.g., cellulose). Soil extracellular glycosidases are significantly affected by nitrogen (N) fertilization but fertilization effects on spatial distributions of soil glycosidases have not been well addressed. Whether the effects of N fertilization vary with bioenergy crop species also remains unclear. Based on a 3-year fertilization experiment in Middle Tennessee, USA, a total of 288 soil samples in topsoil (0–15 cm) were collected from two 15 m 2 plots under three fertilization treatments in switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.) using a spatially explicit design. Four glycosidases, α-glucosidase ( AG ), β-glucosidase ( BG ), β-xylosidase ( BX ), cellobiohydrolase ( CBH ), and their sum associated with C acquisition ( C acq ) were quantified. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha −1 year −1 in urea) and high N input (HN: 168 kg N ha −1 year −1 in urea). The descriptive and geostatistical approaches were used to evaluate their central tendency and spatial heterogeneity. Results showed significant interactive effects of N fertilization and crop type on BX such that LN and HN significantly enhanced BX by 14% and 44% in SG, respectively. The significant effect of crop type was identified and glycosidase activities were 15–39% higher in GG than those in SG except AG . Within-plot variances of glycosidases appeared higher in SG than GG but little differed with N fertilization due to large plot-plot variation. Spatial patterns were generally more evident in LN or HN plots than NN plots for BG in SG and CBH in GG. This study suggested that N fertilization elevated central tendency and spatial heterogeneity of glycosidase activities in surficial soil horizons and these effects however varied with crop and enzyme types. Future studies need to focus on specific enzyme in certain bioenergy cropland soil when N fertilization effect is evaluated.more » « less
-
Abstract Struvite (MgNH4PO4·6H2O) has been precipitated from liquid waste streams to recover valuable nutrients, such as phosphorus (P) and nitrogen (N), that can be used as an alternative fertilizer‐P source. Because prior research has focused on greenhouse studies, it is necessary to expand struvite evaluations to the field‐scale to include row‐crop responses. The objective of this field study was to evaluate the effects of two struvite materials (electrochemically precipitated struvite, ECST; and chemically precipitated struvite, CPST) relative to other common fertilizer‐P sources (diammonium phosphate, DAP; triple superphosphate, TSP; rock phosphate, RP; and monoammonium phosphate, MAP) on soybean [Glycine max(L.) Merr.] response and economics in two consecutive growing seasons in a P‐deficient, silt‐loam soil (Aquic Fraglossudalfs) in eastern Arkansas. Averaged across years, soybean aboveground tissue P uptake was largest (P < .05) from ECST (28.4 kg ha−1), which was similar to CPST (26.7 kg ha−1) and TSP (25.9 kg ha−1) and was smallest from RP (21.4 kg ha−1). In 2019, seed yield was largest (P < .05) from ECST (4.1 Mg ha−1), which was similar to DAP, CPST, RP, TSP, and MAP, and was smallest from the unamended control (3.6 Mg ha−1). In 2020, seed yield was numerically greatest from CPST (2.8 Mg ha−1) and was numerically smallest from ECST (2.2 Mg ha−1). Results showed that wastewater‐recovered struvite materials have the potential to be a viable, alternative fertilizer‐P source for soybean production in a P‐deficient, silt‐loam soil, but further work is needed to confirm struvite's cost effectiveness.more » « less
-
null (Ed.)Cool-season cover crops have been shown to reduce soil erosion and nutrient discharge from maize ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] production systems. However, their effects on long-term weed dynamics are not well-understood. We utilized five long-term research trials in Iowa to quantify germinable weed seedbank densities and compositions after 10+ years of cover cropping treatments. All five trials consisted of zero-tillage maize-soybean rotations managed with and without the inclusion of a yearly winter rye ( Secale cereal L.) cover crop. Seedbank sampling was conducted in the early spring before crop planting at all locations, with three of the five trials having grown a soybean crop the preceding year, and two a maize crop. Two of the trials (both previously soybean) showed significant and biologically relevant decreases (4,070 and 927 seeds m −2 , respectively) in seedbank densities in cover crop treatments compared to controls. In another two trials, one previously maize and one previously soybean, no difference was detected in seedbank densities. In the fifth trial (previously maize), there was a significant, but biologically unimportant increase of 349 seeds m −2 . All five trials' weed communities were dominated by common waterhemp [ Amaranthus tuberculatus (Moq.)], and changes in seedbank composition from cover-cropping were driven by changes in this species. Although previous studies have shown that increases in cover crop biomass are strongly correlated with weed suppression, in our study we did not find a relationship between seedbank changes and the mean amount of cover crop biomass produced over a 10-years period (experiment means ranging from 0.5 to 2.0 Mg ha −1 yr −1 ), the stability of the cover crop biomass production, nor the amount produced going into the previous crop's growing season. We conclude that long-term use of a winter rye cover crop in a maize-soybean system has the potential to meaningfully reduce the size of weed seedbanks compared to winter fallows. However, identifying the mechanisms by which this occurs requires further research into processes such as seed predation and seed decay in cover cropped systems.more » « less
An official website of the United States government

