skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Nitrous Oxide Emissions From Large-Scale Intensive Cropping Systems in the Southern Amazon
Nitrogen (N) fertilizer use is rapidly intensifying on tropical croplands and has the potential to increase emissions of the greenhouse gas, nitrous oxide (N2O). Since about 2005 Mato Grosso (MT), Brazil has shifted from single-cropped soybeans to double-cropping soybeans with maize, and now produces 1.5% of the world's maize. This production shift required an increase in N fertilization, but the effects on N2O emissions are poorly known. We calibrated the process-oriented biogeochemical DeNitrification-DeComposition (DNDC) model to simulate N2O emissions and crop production from soybean and soybean-maize cropping systems in MT. After model validation with field measurements and adjustments for hydrological properties of tropical soils, regional simulations suggested N2O emissions from soybean-maize cropland increased almost fourfold during 2001–2010, from 1.1 ± 1.1 to 4.1 ± 3.2 Gg 1014 N-N2O. Model sensitivity tests showed that emissions were spatially and seasonably variable and especially sensitive to soil bulk density and carbon content. Meeting future demand for maize using current soybean area in MT might require either (a) intensifying 3.0 million ha of existing single soybean to soybean-maize or (b) increasing N fertilization to ~180 kg N ha−1on existing 2.3 million ha of soybean-maize area. The latter strategy would release ~35% more N2O than the first. Our modifications of the DNDC model will improve estimates of N2O emissions from agricultural production in MT and other tropical areas, but narrowing model uncertainty will depend on more detailed field measurements and spatial data on soil and cropping management.  more » « less
Award ID(s):
1739724
PAR ID:
10477701
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Sustainable Food Systems
Volume:
5
ISSN:
2571-581X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Deep tropical soils with net anion exchange capacity can adsorb nitrate and might delay the eutrophication of surface waters that is often associated with many temperate croplands. We investigated anion exchange capacity and soil nitrate pools in deep soils in the Southern Brazilian Amazon, where conversion of tropical forest and Cerrado to intensive fertilized soybean and soybean-maize cropping expanded rapidly in the 2000s. We found that mean soil nitrate pools in the top 8 m increased from 143 kg N ha−1in forest to 1,052 in soybean and 1,161 kg N ha−1in soybean-maize croplands. This nitrate accumulation in croplands aligned with the estimated N surpluses in the croplands. Soil anion exchange capacity explained the magnitude of nitrate accumulation. High nitrate retention in soils was consistent with current low levels of streamwater nitrate exported from croplands. Soil exchange sites were far from saturation, which suggests that nitrate accumulation can continue for longer under current cropping practices, although mechanisms such as competition with other anions and preferential water flowpaths that bypass exchange sites could reduce the time to saturation. 
    more » « less
  2. Abstract Soil nitrous oxide (N2O) emissions exhibit high variability in intensively managed cropping systems, which challenges our ability to understand their complex interactions with controlling factors. We leveraged 17 years (2003–2019) of measurements at the Kellogg Biological Station Long‐Term Ecological Research (LTER)/Long‐Term Agroecosystem Research (LTAR) site to better understand the controls of N2O emissions in four corn–soybean–winter wheat rotations employing conventional, no‐till, reduced input, and biologically based/organic inputs. We used a random forest machine learning model to predict daily N2O fluxes, trained separately for each system with 70% of observations, using variables such as crop species, daily air temperature, cumulative 2‐day precipitation, water‐filled pore space, and soil nitrate and ammonium concentrations. The model explained 29%–42% of daily N2O flux variability in the test data, with greater predictability for the corn phase in each system. The long‐term rotations showed different controlling factors and threshold conditions influencing N2O emissions. In the conventional system, the model identified ammonium (>15 kg N ha−1) and daily air temperature (>23°C) as the most influential variables; in the no‐till system, climate variables such as precipitation and air temperature were important variables. In low‐input and organic systems, where red clover (Trifolium repensL.; before corn) and cereal rye (Secale cerealeL.; before soybean) cover crops were integrated, nitrate was the predominant predictor of N2O emissions, followed by precipitation and air temperature. In low‐input and biologically based systems, red clover residues increased soil nitrogen availability to influence N2O emissions. Long‐term data facilitated machine learning for predicting N2O emissions in response to differential controls and threshold responses to management, environmental, and biogeochemical drivers. 
    more » « less
  3. Double cropping winter camelina (Camelina sativa (L.) Crantz) with maize (Zea mays L.) and soybean (Glycine max L. (Merr.)) is a diversification strategy in northern regions. Winter camelina is reported to have low nutrient requirements, but its nitrogen (N) needs are not well understood. Studies on winter camelina without (Study 1) and with (Study 2) N fertilization were used to compare growth, seed yield and quality, and effects on soil N. Study 1 was conducted from 2015 to 2017 at one location and Study 2 was conducted from 2018 to 2020 at two locations. Grain yield was as much as six times higher in Study 2 compared with Study 1; averaged across treatments, winter camelina yielded 1157 kg ha−1 in Study 2 and 556 kg ha−1 without N. Oil and protein content ranged from 26.4 to 27.2% and 19.4 to 27.1%, respectively, in Study 1 and from 31.7 to 35.9% and 14.9 to 20.8%, respectively, in Study 2. N fertilizer increased winter camelina biomass and grain yield and soil N when double cropped with maize and soybean. Our study indicates that grain yield of winter camelina respond positively to N fertilization in a northern location. The drawback of this is the increase in residual soil N, which suggests the need for further research to balance agronomic practices with environmental outcomes. 
    more » « less
  4. Abstract Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater‐irrigated corn (maize)–soybean–wheat, no‐till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2‐equivalent (CO2e) costs of fossil fuel power, soil emissions of nitrous oxide (N2O), and degassing of supersaturated CO2and N2O from the groundwater. A rainfed reference system had a net mitigating effect of −13.9 (±31) g CO2e m−2 year−1, but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2e m−2 year−1. Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation‐associated increase in soil N2O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2and N2O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2e kg−1yield, close to that of the rainfed system, which was −0.03 (±0.002) kg CO2e kg−1yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources. 
    more » « less
  5. Abstract Lowland tropical forest soils are relatively N rich and are the largest global source of N2O (a powerful greenhouse gas) to the atmosphere. Despite the importance of tropical N cycling, there have been few direct measurements of N2(an inert gas that can serve as an alternate fate for N2O) in tropical soils, limiting our ability to characterize N budgets, manage soils to reduce N2O production, or predict the future role that N limitation to primary productivity will play in buffering against climate change. We collected soils from across macro‐ and micro‐topographic gradients that have previously been shown to differ in O2availability and trace gas emissions. We then incubated these soils under oxic and anoxic headspaces to explore the relative effect of soil location versus transient redox conditions. No matter where the soils came from, or what headspace O2was used in the incubation, N2emissions dominated the flux of N gas losses. In the macrotopography plots, production of N2and N2O were higher in low O2valleys than on more aerated ridges and slopes. In the microtopography plots, N2emissions from plots with lower mean soil O2(5%–10%) were greater than in plots with higher mean soil O2(10%–20%). We estimate an N gas flux of ∼37 kg N/ha/yr from this forest, 99% as N2. These results suggest that N2fluxes may have been systematically underestimated in these landscapes, and that the measurements we present call for a reevaluation of the N budgets in lowland tropical forest ecosystems. 
    more » « less