Deep Generative Networks (DGNs) are extensively employed in Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and their variants to approximate the data manifold and distribution. However, training samples are often distributed non-uniformly on the manifold, due to the cost or convenience of collection. For example, the CelebA dataset contains a large fraction of smiling faces. These inconsistencies will be reproduced when sampling from the trained DGN, which is not always preferred, e.g., for fairness or data augmentation. In response, we develop MaGNET, a novel and theoretically motivated latent space sampler for any pre-trained DGN that produces samples uniformly distributed on the learned manifold. We perform a range of experiments on several datasets and DGNs, e.g., for the state-of-the-art StyleGAN2 trained on the FFHQ dataset, uniform sampling via MaGNET increases distribution precision by 4.1% and recall by 3.0% and decreases gender bias by 41.2%, without requiring labels or retraining. Since uniform sample distribution does not imply uniform semantic distribution, we also explore how semantic attributes of generated samples vary under MaGNET sampling. Colab and codes at bit.ly/magnet-sampling
more »
« less
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values
We present Polarity Sampling, a theoretically justified plug-and-play method for controlling the generation quality and diversity of any pre-trained deep generative network (DGN). Leveraging the fact that DGNs are, or can be approximated by, continuous piecewise affine splines, we derive the analytical DGN output space distribution as a function of the product of the DGN's Jacobian singular values raised to a power rho. We dub rho the polarity parameter and prove that rho focuses the DGN sampling on the modes (rho< 0) or anti-modes (rho> 0) of the DGN output space probability distribution. We demonstrate that nonzero polarity values achieve a better precision-recall (quality-diversity) Pareto frontier than standard methods, such as truncation, for a number of state-of-the-art DGNs. We also present quantitative and qualitative results on the improvement of overall generation quality (eg, in terms of the Frechet Inception Distance) for a number of state-of-the-art DGNs, including StyleGAN3, BigGAN-deep, NVAE, for different conditional and unconditional image generation tasks. In particular, Polarity Sampling redefines the state-of-the-art for StyleGAN2 on the FFHQ Dataset to FID 2.57, StyleGAN2 on the LSUN Car Dataset to FID 2.27 and StyleGAN3 on the AFHQv2 Dataset to FID 3.95. Colab Demo: bit. ly/polarity-samp
more »
« less
- PAR ID:
- 10374100
- Date Published:
- Journal Name:
- IEEE Computer Society Conference on Computer Vision and Pattern Recognition
- ISSN:
- 2332-564X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep Generative Networks (DGNs) with probabilistic modeling of their output and latent space are currently trained via Variational Autoencoders (VAEs). In the absence of a known analytical form for the posterior and likelihood expectation, VAEs resort to approximations, including (Amortized) Variational Inference (AVI) and Monte-Carlo (MC) sampling. We exploit the Continuous Piecewise Affine (CPA) property of modern DGNs to derive their posterior and marginal distributions as well as the latter's first moments. These findings enable us to derive an analytical Expectation-Maximization (EM) algorithm that enables gradient-free DGN learning. We demonstrate empirically that EM training of DGNs produces greater likelihood than VAE training. Our findings will guide the design of new VAE AVI that better approximate the true posterior and open avenues to apply standard statistical tools for model comparison, anomaly detection, and missing data imputation.more » « less
-
null (Ed.)Deep Generative Networks (DGNs) with probabilistic modeling of their output and latent space are currently trained via Variational Autoencoders (VAEs). In the absence of a known analytical form for the posterior and likelihood expectation, VAEs resort to approximations, including (Amortized) Variational Inference (AVI) and Monte-Carlo (MC) sampling. We exploit the Continuous Piecewise Affine (CPA) property of modern DGNs to derive their posterior and marginal distributions as well as the latter's first moments. These findings enable us to derive an analytical Expectation-Maximization (EM) algorithm that enables gradient-free DGN learning. We demonstrate empirically that EM training of DGNs produces greater likelihood than VAE training. Our findings will guide the design of new VAE AVI that better approximate the true posterior and open avenues to apply standard statistical tools for model comparison, anomaly detection, and missing data imputation.more » « less
-
We connect a large class of Generative Deep Networks (GDNs) with spline operators in order to derive their properties, limitations, and new opportunities. By characterizing the latent space partition, dimension and angularity of the generated manifold, we relate the manifold dimension and approximation error to the sample size. The manifold-per-region affine subspace defines a local coordinate basis; we provide necessary and sufficient conditions relating those basis vectors with disentanglement. We also derive the output probability density mapped onto the generated manifold in terms of the latent space density, which enables the computation of key statistics such as its Shannon entropy. This finding also enables the computation of the GDN likelihood, which provides a new mechanism for model comparison as well as providing a quality measure for (generated) samples under the learned distribution. We demonstrate how low entropy and/or multimodal distributions are not naturally modeled by DGNs and are a cause of training instabilities.more » « less
-
Diffusion models (DMs) create samples from a data distribution by starting from random noise and iteratively solving a reverse-time ordinary differential equation (ODE). Because each step in the iterative solution requires an expensive neural function evaluation (NFE), there has been significant interest in approximately solving these diffusion ODEs with only a few NFEs without modifying the underlying model. However, in the few NFE regime, we observe that tracking the true ODE evolution is fundamentally impossible using traditional ODE solvers. In this work, we propose a new method that learns a good solver for the DM, which we call Solving for the Solver (S4S). S4S directly optimizes a solver to obtain good generation quality by learning to match the output of a strong teacher solver. We evaluate S4S on six different pre-trained DMs, including pixel-space and latent-space DMs for both conditional and unconditional sampling. In all settings, S4S uniformly improves the sample quality relative to traditional ODE solvers. Moreover, our method is lightweight, data-free, and can be plugged in black-box on top of any discretization schedule or architecture to improve performance. Building on top of this, we also propose S4S-Alt, which optimizes both the solver and the discretization schedule. By exploiting the full design space of DM solvers, with 5 NFEs, we achieve an FID of 3.73 on CIFAR10 and 13.26 on MS-COCO, representing a 1.5× improvement over previous training-free ODE methods.more » « less
An official website of the United States government

