skip to main content


Title: Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values
We present Polarity Sampling, a theoretically justified plug-and-play method for controlling the generation quality and diversity of any pre-trained deep generative network (DGN). Leveraging the fact that DGNs are, or can be approximated by, continuous piecewise affine splines, we derive the analytical DGN output space distribution as a function of the product of the DGN's Jacobian singular values raised to a power rho. We dub rho the polarity parameter and prove that rho focuses the DGN sampling on the modes (rho< 0) or anti-modes (rho> 0) of the DGN output space probability distribution. We demonstrate that nonzero polarity values achieve a better precision-recall (quality-diversity) Pareto frontier than standard methods, such as truncation, for a number of state-of-the-art DGNs. We also present quantitative and qualitative results on the improvement of overall generation quality (eg, in terms of the Frechet Inception Distance) for a number of state-of-the-art DGNs, including StyleGAN3, BigGAN-deep, NVAE, for different conditional and unconditional image generation tasks. In particular, Polarity Sampling redefines the state-of-the-art for StyleGAN2 on the FFHQ Dataset to FID 2.57, StyleGAN2 on the LSUN Car Dataset to FID 2.27 and StyleGAN3 on the AFHQv2 Dataset to FID 3.95. Colab Demo: bit. ly/polarity-samp  more » « less
Award ID(s):
1911094 1838177 1730574
NSF-PAR ID:
10374100
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN:
2332-564X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Generative Networks (DGNs) are extensively employed in Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and their variants to approximate the data manifold and distribution. However, training samples are often distributed non-uniformly on the manifold, due to the cost or convenience of collection. For example, the CelebA dataset contains a large fraction of smiling faces. These inconsistencies will be reproduced when sampling from the trained DGN, which is not always preferred, e.g., for fairness or data augmentation. In response, we develop MaGNET, a novel and theoretically motivated latent space sampler for any pre-trained DGN that produces samples uniformly distributed on the learned manifold. We perform a range of experiments on several datasets and DGNs, e.g., for the state-of-the-art StyleGAN2 trained on the FFHQ dataset, uniform sampling via MaGNET increases distribution precision by 4.1% and recall by 3.0% and decreases gender bias by 41.2%, without requiring labels or retraining. Since uniform sample distribution does not imply uniform semantic distribution, we also explore how semantic attributes of generated samples vary under MaGNET sampling. Colab and codes at bit.ly/magnet-sampling 
    more » « less
  2. Multilayer neural networks set the current state of the art for many technical classification problems. But, these networks are still, essentially, black boxes in terms of analyzing them and predicting their performance. Here, we develop a statistical theory for the one-layer perceptron and show that it can predict performances of a surprisingly large variety of neural networks with different architectures. A general theory of classification with perceptrons is developed by generalizing an existing theory for analyzing reservoir computing models and connectionist models for symbolic reasoning known as vector symbolic architectures. Our statistical theory offers three formulas leveraging the signal statistics with increasing detail. The formulas are analytically intractable, but can be evaluated numerically. The description level that captures maximum details requires stochastic sampling methods. Depending on the network model, the simpler formulas already yield high prediction accuracy. The quality of the theory predictions is assessed in three experimental settings, a memorization task for echo state networks (ESNs) from reservoir computing literature, a collection of classification datasets for shallow randomly connected networks, and the ImageNet dataset for deep convolutional neural networks. We find that the second description level of the perceptron theory can predict the performance of types of ESNs, which could not be described previously. Furthermore, the theory can predict deep multilayer neural networks by being applied to their output layer. While other methods for prediction of neural networks performance commonly require to train an estimator model, the proposed theory requires only the first two moments of the distribution of the postsynaptic sums in the output neurons. Moreover, the perceptron theory compares favorably to other methods that do not rely on training an estimator model. 
    more » « less
  3. Accurate uncertainty quantification is necessary to enhance the reliability of deep learning (DL) models in realworld applications. In the case of regression tasks, prediction intervals (PIs) should be provided along with the deterministic predictions of DL models. Such PIs are useful or “high-quality (HQ)” as long as they are sufficiently narrow and capture most of the probability density. In this article, we present a method to learn PIs for regression-based neural networks (NNs) automatically in addition to the conventional target predictions. In particular, we train two companion NNs: one that uses one output, the target estimate, and another that uses two outputs, the upper and lower bounds of the corresponding PI. Our main contribution is the design of a novel loss function for the PI-generation network that takes into account the output of the target-estimation network and has two optimization objectives: minimizing the mean PI width and ensuring the PI integrity using constraints that maximize the PI probability coverage implicitly. Furthermore, we introduce a self-adaptive coefficient that balances both objectives within the loss function, which alleviates the task of fine-tuning. Experiments using a synthetic dataset, eight benchmark datasets, and a real-world crop yield prediction dataset showed that our method was able to maintain a nominal probability coverage and produce significantly narrower PIs without detriment to its target estimation accuracy when compared to those PIs generated by three state-of-the-art neuralnetwork-based methods. In other words, our method was shown to produce higher quality PIs. 
    more » « less
  4. We connect a large class of Generative Deep Networks (GDNs) with spline operators in order to derive their properties, limitations, and new opportunities. By characterizing the latent space partition, dimension and angularity of the generated manifold, we relate the manifold dimension and approximation error to the sample size. The manifold-per-region affine subspace defines a local coordinate basis; we provide necessary and sufficient conditions relating those basis vectors with disentanglement. We also derive the output probability density mapped onto the generated manifold in terms of the latent space density, which enables the computation of key statistics such as its Shannon entropy. This finding also enables the computation of the GDN likelihood, which provides a new mechanism for model comparison as well as providing a quality measure for (generated) samples under the learned distribution. We demonstrate how low entropy and/or multimodal distributions are not naturally modeled by DGNs and are a cause of training instabilities. 
    more » « less
  5. Abstract

    The Li-Stephens (LS) haplotype copying model forms the basis of a number of important statistical inference procedures in genetics. LS is a probabilistic generative model which supposes that a sampled chromosome is an imperfect mosaic of other chromosomes found in a population. In the frequentist setting which is the focus of this paper, the output of LS is a “copying path” through chromosome space. The behavior of LS depends crucially on two user-specified parameters,$$\theta $$θand$$\rho $$ρ, which are respectively interpreted as the rates of mutation and recombination. However, because LS is not based on a realistic model of ancestry, the precise connection between these parameters and the biological phenomena they represent is unclear. Here, we offer an alternative perspective, which considers$$\theta $$θand$$\rho $$ρas tuning parameters, and seeks to understand their impact on the LS output. We derive an algorithm which, for a given dataset, efficiently partitions the$$(\theta ,\rho )$$(θ,ρ)plane into regions where the output of the algorithm is constant, thereby enumerating all possible solutions to the LS model in one go. We extend this approach to the “diploid LS” model commonly used for phasing. We demonstrate the usefulness of our method by studying the effects of changing$$\theta $$θand$$\rho $$ρwhen using LS for common bioinformatic tasks. Our findings indicate that using the conventional (i.e., population-scaled) values for$$\theta $$θand$$\rho $$ρproduces near optimal results for imputation, but may systematically inflate switch error in the case of phasing diploid genotypes.

     
    more » « less