In the smart home landscape, there is an increasing trend of homeowners sharing device access outside their homes. This practice presents unique challenges in terms of security and privacy. In this study, we evaluated the co-management features in smart home management systems to investigate 1) how homeowners establish and authenticate shared users’ access, 2) the access control mechanisms, and 3) the management, monitoring, and revocation of access for shared devices. We conducted a systematic feature analysis of 11 Android and iOS mobile applications (“apps”) and 2 open-source platforms designed for smart home management. Our study revealed that most smart home systems adopt a centralized control model which necessitates shared users to utilize the primary app for device access, while providing diverse sharing mechanisms, such as email or phone invitations and unique codes, each presenting distinct security and privacy advantages. Moreover, we discovered a variety of access control options, ranging from full access to granular access control such as time-based restrictions which, while enhancing security and convenience, necessitate careful management to avoid user confusion. Additionally, our findings highlighted the prevalence of comprehensive methods for monitoring shared users’ access, with most systems providing detailed logs for added transparency and security, although there are some restrictions to safeguard homeowner privacy. Based on our findings, we recommend enhanced access control features to improve user experience in shared settings. 
                        more » 
                        « less   
                    
                            
                            Mi Casa es Su Casa (‘MiSu’): A Mobile App for Sharing Smart Home Devices with People Outside the Home
                        
                    
    
            We developed “MiSu” an Android and iOS app that allows smart home homeowners to share their devices (e.g., Ring doorbell, security alarm, smart door lock, smart light bulb) with people outside of their home to control what, when, and how they can engage with the smart devices. MiSu provides options for fine-grain access control, the ability for guests to control smart homes using their own device and login, and provides homeowners real-time logs where they can view all actions taken by guests invited to interact with their smart homes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1814439
- PAR ID:
- 10374190
- Date Published:
- Journal Name:
- The Proceedings of the ACM on Human-Computer Interaction, (CSCW 2022)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With the availability of Internet of Things (IoT) devices offering varied services, smart home environments have seen widespread adoption in the last two decades. Protecting privacy in these environments becomes an important problem because IoT devices may collect information about the home’s occupants without their knowledge or consent. Furthermore, a large number of devices in the home, each collecting small amounts of data, may, in aggregate, reveal non-obvious attributes about the home occupants. A first step towards addressing privacy is discovering what devices are present in the home. In this paper, we formally define device discovery in smart homes and identify the features that constitute discovery in that environment. Then, we propose an evaluative rubric that rates smart home technology initiatives on their device discovery capabilities and use it to evaluate four commonly deployed technologies. We find none cover all device discovery aspects. We conclude by proposing a combined technology solution that provides comprehensive device discovery tailored to smart homes.more » « less
- 
            With the availability of Internet of Things (IoT) devices offering varied services, smart home environments have seen widespread adoption in the last two decades. Protecting privacy in these environments becomes an important problem because IoT devices may collect information about the home’s occupants without their knowledge or consent. Furthermore, a large number of devices in the home, each collecting small amounts of data, may, in aggregate, reveal non-obvious attributes about the home occupants. A first step towards addressing privacy is discovering what devices are present in the home. In this paper, we formally define device discovery in smart homes and identify the features that constitute discovery in that environment. Then, we propose an evaluative rubric that rates smart home technology initiatives on their device discovery capabilities and use it to evaluate four commonly deployed technologies. We find none cover all device discovery aspects. We conclude by proposing a combined technology solution that provides comprehensive device discovery tailored to smart homes.more » « less
- 
            Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges.more » « less
- 
            Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    