skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 23, 2025

Title: Device Discovery in the Smart Home Environment
With the availability of Internet of Things (IoT) devices offering varied services, smart home environments have seen widespread adoption in the last two decades. Protecting privacy in these environments becomes an important problem because IoT devices may collect information about the home’s occupants without their knowledge or consent. Furthermore, a large number of devices in the home, each collecting small amounts of data, may, in aggregate, reveal non-obvious attributes about the home occupants. A first step towards addressing privacy is discovering what devices are present in the home. In this paper, we formally define device discovery in smart homes and identify the features that constitute discovery in that environment. Then, we propose an evaluative rubric that rates smart home technology initiatives on their device discovery capabilities and use it to evaluate four commonly deployed technologies. We find none cover all device discovery aspects. We conclude by proposing a combined technology solution that provides comprehensive device discovery tailored to smart homes.  more » « less
Award ID(s):
1955805
PAR ID:
10528561
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. With the availability of Internet of Things (IoT) devices offering varied services, smart home environments have seen widespread adoption in the last two decades. Protecting privacy in these environments becomes an important problem because IoT devices may collect information about the home’s occupants without their knowledge or consent. Furthermore, a large number of devices in the home, each collecting small amounts of data, may, in aggregate, reveal non-obvious attributes about the home occupants. A first step towards addressing privacy is discovering what devices are present in the home. In this paper, we formally define device discovery in smart homes and identify the features that constitute discovery in that environment. Then, we propose an evaluative rubric that rates smart home technology initiatives on their device discovery capabilities and use it to evaluate four commonly deployed technologies. We find none cover all device discovery aspects. We conclude by proposing a combined technology solution that provides comprehensive device discovery tailored to smart homes. 
    more » « less
  2. Smart homes are gaining popularity due to their convenience and efficiency, both of which come at the expense of increased complexity of Internet of Things (IoT) devices. Due to the number and heterogeneity of IoT devices, technologically inexperienced or time-burdened residents are unlikely to manage the setup and maintenance of IoT apps and devices. We highlight the need for a "HandyTech": a technically skilled contractor who can set up, repair, debug, monitor, and troubleshoot home IoT systems. In this paper, we consider the potential privacy challenges posed by the HandyTech, who has the ability to access IoT devices and private data. We do so in the context of single and multi-user smart homes, including rental units, condominiums, and temporary guests or workers. We examine the privacy harms that can arise when a HandyTech has legitimate access to information, but uses it in unintended ways. By providing insights for the development of privacy control policies and measures in-home IoT environments in the presence of the HandyTech, we capture the privacy concerns raised by other visitors to the home, including temporary residents, part-time workers, etc. This helps lay a foundation for the broad set of privacy concerns raised by home IoT systems. 
    more » « less
  3. Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively. 
    more » « less
  4. Users face various privacy risks in smart homes, yet there are limited ways for them to learn about the details of such risks, such as the data practices of smart home devices and their data flow. In this paper, we present Privacy Plumber, a system that enables a user to inspect and explore the privacy "leaks" in their home using an augmented reality tool. Privacy Plumber allows the user to learn and understand the volume of data leaving the home and how that data may affect a user's privacy -- in the same physical context as the devices in question, because we visualize the privacy leaks with augmented reality. Privacy Plumber uses ARP spoofing to gather aggregate network traffic information and presents it through an overlay on top of the device in an smartphone app. The increased transparency aims to help the user make privacy decisions and mend potential privacy leaks, such as instruct Privacy Plumber on what devices to block, on what schedule (i.e., turn off Alexa when sleeping), etc. Our initial user study with six participants demonstrates participants' increased awareness of privacy leaks in smart devices, which further contributes to their privacy decisions (e.g., which devices to block). 
    more » « less
  5. Due to the proliferation of IoT and the popularity of smart contracts mediated by blockchain, smart home systems have become capable of providing privacy and security to their occupants. In blockchain-based home automation systems, business logic is handled by smart contracts securely. However, a blockchain-based solution is inherently resource-intensive, making it unsuitable for resource-constrained IoT devices. Moreover, time-sensitive actions are complex to perform in a blockchainbased solution due to the time required to mine a block. In this work, we propose a blockchain-independent smart contract infrastructure suitable for resource-constrained IoT devices. Our proposed method is also capable of executing time-sensitive business logic. As an example of an end-to-end application, we describe a smart camera system using our proposed method, compare this system with an existing blockchain-based solution, and present an empirical evaluation of their performance. 
    more » « less