skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of a portable toolkit to diagnose coral thermal stress
Abstract Coral bleaching, precipitated by the expulsion of the algal symbionts that provide colonies with fixed carbon is a global threat to reef survival. To protect corals from anthropogenic stress, portable tools are needed to detect and diagnose stress syndromes and assess population health prior to extensive bleaching. Here, medical grade Urinalysis strips, used to detect an array of disease markers in humans, were tested on the lab stressed Hawaiian coral species, Montipora capitata (stress resistant) and Pocillopora acuta (stress sensitive), as well as samples from nature that also included Porites compressa . Of the 10 diagnostic reagent tests on these strips, two appear most applicable to corals: ketone and leukocytes. The test strip results from M. capitata were explored using existing transcriptomic data from the same samples and provided evidence of the stress syndromes detected by the strips. We designed a 3D printed smartphone holder and image processing software for field analysis of test strips (TestStripDX) and devised a simple strategy to generate color scores for corals (reflecting extent of bleaching) using a smartphone camera (CoralDX). Our approaches provide field deployable methods, that can be improved in the future (e.g., coral-specific stress test strips) to assess reef health using inexpensive tools and freely available software.  more » « less
Award ID(s):
2128073 1846740 1711165 1556253
PAR ID:
10374195
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine heatwaves are starting to occur several times a decade, yet we do not understand the effect this has on corals across biological scales. This study combines tissue-, organism-, and community-level analyses to investigate the effects of a marine heatwave on reef-building corals. Adjacent conspecific pairs of coral colonies of Montipora capitata and Porites compressa that showed contrasting phenotypic responses (i.e., bleached vs. not bleached) were first identified during a marine heatwave that occurred in 2015 in Kāne’ohe Bay, Hawai‘ i. These conspecific pairs of bleaching-resistant and bleaching-susceptible colonies were sampled for histology and photographed before, during, and after a subsequent marine heatwave that occurred in 2019. Histology samples were quantified for: (i) abundance of mesenterial filaments, (ii) tissue structural integrity, (iii) clarity of epidermis, and (iv) cellular integrity (lack of necrosis/granulation) on a 1–5 scale and averaged for an overall tissue integrity score. Tissue integrity scores revealed a significant decline in overall tissue health during the 2019 heatwave relative to the months prior to the heatwave for individuals of both species, regardless of past bleaching history in 2015 or bleaching severity during the 2019 heatwave. Coral tissue integrity scores were then compared to concurrent colony bleaching severity, which revealed that tissue integrity was significantly correlated with colony bleaching severity and suggests that the stability of the symbiosis is related to host tissue health. Colony partial mortality was also quantified as the cumulative proportion of each colony that appeared dead 2.5 years following the 2019 bleaching event, and tissue integrity during the heatwave was found to be strongly predictive of the extent of partial mortality following the heatwave for M. capitata but not P. compressa, the latter of which suffered little to no mortality. Surprisingly, bleaching severity and partial mortality were not significantly correlated for either species, suggesting that tissue integrity was a better predictor of mortality than bleaching severity in M. capitata. Despite negative effects of heat stress at the tissue- and colony-level, no significant changes in coral cover were detected, indicating resilience at the community level. However, declines in tissue integrity in response to heat stress that are not accompanied by a visible bleaching response may still have long-term consequences for fitness, and this is an important area of future investigation as heat stress is commonly associated with long-term decreases in coral fecundity and growth. Our results suggest that histology is a valuable tool for revealing the harmful effects of marine heatwaves on corals before they are visually evident as bleaching, and may thus improve the predictability of ecosystem changes following climate change-driven heat stress by providing a more comprehensive assessment of coral health. 
    more » « less
  2. Abstract Coral bleaching events from thermal stress are increasing globally in duration, frequency, and intensity. While bleaching can cause mortality, some corals survive, reacquire symbionts, and recover. We experimentally bleachedMontipora capitatato examine molecular and physiological differences between corals that recover (resilient) and those that die (susceptible). Corals were collected and monitored for eight months post-bleaching to identify genets with long-term resilience. Using an integrated systems-biology approach that included quantitative proteomics, 16S rRNA sequencing to characterize the coral microbiome, total coral lipids, symbiont community composition and density, we explored molecular-level mechanisms of tolerance in corals pre- and post-bleaching. Prior to thermal stress, resilient corals have a more diverse microbiome and abundant proteins essential for carbon acquisition, symbiont retention, and pathogen resistance. Protein signatures of susceptible corals showed early symbiont rejection and utilized urea for carbon and nitrogen. Our results reveal molecular factors for surviving bleaching events and identify diagnostic protein biomarkers for reef management and restoration. 
    more » « less
  3. Background Corals, which form the foundation of biodiverse reef ecosystems, are under threat from warming oceans. Reefs provide essential ecological services, including food, income from tourism, nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion. Here, we studied the coral thermal stress response using network methods to analyze transcriptomic and polar metabolomic data generated from the Hawaiian rice coral Montipora capitata . Coral nubbins were exposed to ambient or thermal stress conditions over a 5-week period, coinciding with a mass spawning event of this species. The major goal of our study was to expand the inventory of thermal stress-related genes and metabolites present in M. capitata and to study gene-metabolite interactions. These interactions provide the foundation for functional or genetic analysis of key coral genes as well as provide potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to analyze the accumulation of sex hormones prior to and during mass spawning to understand how thermal stress may impact reproductive success in M. capitata . Methods M. capitata was exposed to thermal stress during its spawning cycle over the course of 5 weeks, during which time transcriptomic and polar metabolomic data were collected. We analyzed these data streams individually, and then integrated both data sets using MAGI (Metabolite Annotation and Gene Integration) to investigate molecular transitions and biochemical reactions. Results Our results reveal the complexity of the thermal stress phenome in M. capitata , which includes many genes involved in redox regulation, biomineralization, and reproduction. The size and number of modules in the gene co-expression networks expanded from the initial stress response to the onset of bleaching. The later stages involved the suppression of metabolite transport by the coral host, including a variety of sodium-coupled transporters and a putative ammonium transporter, possibly as a response to reduction in algal productivity. The gene-metabolite integration data suggest that thermal treatment results in the activation of animal redox stress pathways involved in quenching molecular oxygen to prevent an overabundance of reactive oxygen species. Lastly, evidence that thermal stress affects reproductive activity was provided by the downregulation of CYP-like genes and the irregular production of sex hormones during the mass spawning cycle. Overall, redox regulation and metabolite transport are key components of the coral animal thermal stress phenome. Mass spawning was highly attenuated under thermal stress, suggesting that global climate change may negatively impact reproductive behavior in this species. 
    more » « less
  4. Increasingly frequent marine heatwaves are devastating coral reefs. Corals that survive these extreme events must rapidly recover if they are to withstand subsequent events, and long-term survival in the face of rising ocean temperatures may hinge on recovery capacity and acclimatory gains in heat tolerance over an individual’s lifespan. To better understand coral recovery trajectories in the face of successive marine heatwaves, we monitored the responses of bleaching-susceptible and bleaching-resistant individuals of two dominant coral species in Hawai’i,Montipora capitataandPorites compressa, over a decade that included three marine heatwaves. Bleaching-susceptible colonies ofP. compressaexhibited beneficial acclimatization to heat stress (i.e., less bleaching) following repeat heatwaves, becoming indistinguishable from bleaching-resistant conspecifics during the third heatwave. In contrast, bleaching-susceptibleM. capitatarepeatedly bleached during all successive heatwaves and exhibited seasonal bleaching and substantial mortality for up to 3 y following the third heatwave. Encouragingly, bleaching-resistant individuals of both species remained pigmented across the entire time series; however, pigmentation did not necessarily indicate physiological resilience. Specifically,M. capitatadisplayed incremental yet only partial recovery of symbiont density and tissue biomass across both bleaching phenotypes up to 35 mo following the third heatwave as well as considerable partial mortality. Conversely,P. compressaappeared to recover across most physiological metrics within 2 y and experienced little to no mortality. Ultimately, these results indicate that even some visually robust, bleaching-resistant corals can carry the cost of recurring heatwaves over multiple years, leading to divergent recovery trajectories that may erode coral reef resilience in the Anthropocene. 
    more » « less
  5. Seveso, D (Ed.)
    Coral bleaching events are increasing with such frequency and intensity that many of the world’s reef-building corals are in peril. Some corals appear to be more resilient after bleaching but the mechanisms underlying their ability to recover from bleaching and persist are not fully understood. We used shotgun proteomics to compare the proteomes of the outer layer (OL) tissue and inner core (IC) tissue and skeleton compartments of experimentally bleached and control (i.e., non-bleached) colonies of Montipora capitata, a perforate Hawaiian species noted for its resilience after bleaching. We identified 2,361 proteins in the OL and IC compartments for both bleached and non-bleached individuals. In the OL of bleached corals, 63 proteins were significantly more abundant and 28 were significantly less abundant compared to the OL of nonbleached corals. In the IC of bleached corals, 22 proteins were significantly more abundant and 17 were significantly less abundant compared to the IC of non-bleached corals. Gene ontology (GO) and pathway analyses revealed metabolic processes that were occurring in bleached corals but not in non-bleached corals. The OL of bleached corals used the glyoxylate cycle to derive carbon from internal storage compounds such as lipids, had a high protein turnover rate, and shifted reliance on nitrogen from ammonia to nitrogen produced from the breakdown of urea and betaine. The IC of bleached corals compartmentalized the shunting of glucose to the pentose phosphate pathway. Bleached corals increased abundances of several antioxidant proteins in both the OL and IC compartments compared to non-bleached corals. These results highlight contrasting strategies for responding to bleaching stress in different compartments of bleached M. capitata and shed light on some potential mechanisms behind bleaching resilience. 
    more » « less