Abstract We present a12CO(J= 2−1) survey of 60 local galaxies using data from the Atacama Compact Array as part of the Extragalactic Database for Galaxy Evolution: the ACA EDGE survey. These galaxies all have integral field spectroscopy from the CALIFA survey. Compared to other local galaxy surveys, ACA EDGE is designed to mitigate selection effects based on CO brightness and morphological type. Of the 60 galaxies in ACA EDGE, 36 are on the star formation main sequence, 13 are on the red sequence, and 11 lie in the “green valley” transition between these sequences. We test how star formation quenching processes affect the star formation rate (SFR) per unit molecular gas mass, SFEmol= SFR/Mmol, and related quantities in galaxies with stellar masses 10 ≤ log[M⋆/M⊙] ≤ 11.5 covering the full range of morphological types. We observe a systematic decrease of the molecular-to-stellar mass fraction ( ) with a decreasing level of star formation activity, with green valley galaxies also having lower SFEmolthan galaxies on the main sequence. On average, we find that the spatially resolved SFEmolwithin the bulge region of green valley galaxies is lower than in the bulges of main-sequence galaxies if we adopt a constant CO-to-H2conversion factor,αCO. While efficiencies in main-sequence galaxies remain almost constant with galactocentric radius, in green valley galaxies, we note a systematic increase of SFEmol, , and specific SFR with increasing radius. As shown in previous studies, our results suggest that although gas depletion (or removal) seems to be the most important driver of the star formation quenching in galaxies transiting through the green valley, a reduction in star formation efficiency is also required during this stage.
more »
« less
Extreme Variation in Star Formation Efficiency across a Compact, Starburst Disk Galaxy
Abstract We report on the internal distribution of star formation efficiency in IRAS 08339+6517 (hereafter IRAS08), using ∼200 pc resolution CO(2 − 1) observations from NOEMA. The molecular gas depletion time changes by 2 orders-of-magnitude from disk-like values in the outer parts to less than 10 8 yr inside the half-light radius. This translates to a star formation efficiency per freefall time that also changes by 2 orders-of-magnitude, reaching 50%–100%, different than local spiral galaxies and the typical assumption of constant, low star formation efficiencies. Our target is a compact, massive disk galaxy that has a star formation rate 10× above the z = 0 main sequence; Toomre Q ≈ 0.5−0.7 and high gas velocity dispersion ( σ mol ≈ 25 km s −1 ). We find that IRAS08 is similar to other rotating, starburst galaxies from the literature in the resolved Σ SFR ∝ Σ mol N relation. By combining resolved literature studies we find that the distance from the main sequence is a strong indicator of the Kennicutt-Schmidt power-law slope, with slopes of N ≈ 1.6 for starbursts from 100 to 10 4 M ⊙ pc −2 . Our target is consistent with a scenario in which violent disk instabilities drive rapid inflows of gas. It has low values of Toomre- Q , and also at all radii, the inflow timescale of the gas is less than the depletion time, which is consistent with the flat metallicity gradients in IRAS08. We consider these results in light of popular star formation theories; in general observations of IRAS08 find the most tension with theories in which star formation efficiency is a constant. Our results argue for the need of high-spatial-resolution CO observations for a larger number of similar targets.
more »
« less
- Award ID(s):
- 2108140
- PAR ID:
- 10374285
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 928
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0.more » « less
-
Abstract We present a suite of six high-resolution chemodynamical simulations of isolated galaxies, spanning observed disk-dominated environments on the star-forming main sequence, as well as quenched, bulge-dominated environments. We compare and contrast the physics driving star formation and stellar feedback among the galaxies, with a view to modeling these processes in cosmological simulations. We find that the mass loading of galactic outflows is coupled to the clustering of supernova explosions, which varies strongly with the rate of galactic rotation Ω =vcirc/Rvia the Toomre length, leading to smoother gas disks in the bulge-dominated galaxies. This sets an equation of state in the star-forming gas that also varies strongly with Ω, so that the bulge-dominated galaxies have higher midplane densities, lower velocity dispersions, and higher molecular gas fractions than their main-sequence counterparts. The star formation rate in five out of six galaxies is independent of Ω and is consistent with regulation by the midplane gas pressure alone. In the sixth galaxy, which has the most centrally concentrated bulge and thus the highest Ω, we reproduce dynamical suppression of the star formation efficiency in agreement with observations. This produces a transition away from pressure-regulated star formation.more » « less
-
Abstract The gas-phase velocity dispersions in disk galaxies, which trace turbulence in the interstellar medium, are observed to increase with lookback time. However, the mechanisms that set this rise in turbulence are observationally poorly constrained. To address this, we combine kiloparsec-scale Atacama Large Millimeter/submillimeter Array observations of CO(3−2) and CO(4−3) with Hubble Space Telescope observations of Hαto characterize the molecular gas and star formation properties of seven local analogs of main-sequence galaxies atz∼ 1–2, drawn from the DYNAMO sample. Investigating the “molecular gas main sequence” on kiloparsec scales, we find that galaxies in our sample are more gas-rich than local star-forming galaxies at all disk positions. We measure beam-smearing-corrected molecular gas velocity dispersions and relate them to the molecular gas and star formation rate surface densities. Despite being relatively nearby (z∼ 0.1), DYNAMO galaxies exhibit high velocity dispersions and gas and star formation rate surface densities throughout their disks, when compared to local star-forming samples. Comparing these measurements to predictions from star formation theory, we find very good agreements with the latest feedback-regulated star formation models. However, we find that theories that combine dissipation of gravitational energy from radial gas transport with feedback overestimate the observed molecular gas velocity dispersions.more » « less
-
Abstract We present 0.″035 resolution (∼200 pc) imaging of the 158 μ m [C ii ] line and the underlying dust continuum of the z = 6.9 quasar J234833.34–305410.0. The 18 hour Atacama Large Millimeter/submillimeter Array observations reveal extremely compact emission (diameter ∼1 kpc) that is consistent with a simple, almost face-on, rotation–supported disk with a significant velocity dispersion of ∼160 km s −1 . The gas mass in just the central 200 pc is ∼4 × 10 9 M ⊙ , about a factor of two higher than that of the central supermassive black hole. Consequently we do not resolve the black hole’s sphere of influence, and find no kinematic signature of the central supermassive black hole. Kinematic modeling of the [C ii ] line shows that the dynamical mass at large radii is consistent with the gas mass, leaving little room for a significant mass contribution by stars and/or dark matter. The Toomre–Q parameter is less than unity throughout the disk, and thus is conducive to star formation, consistent with the high-infrared luminosity of the system. The dust in the central region is optically thick, at a temperature >132 K. Using standard scaling relations of dust heating by star formation, this implies an unprecedented high star formation rate density of >10 4 M ⊙ yr −1 kpc −2 . Such a high number can still be explained with the Eddington limit for star formation under certain assumptions, but could also imply that the central supermassive black hole contributes to the heating of the dust in the central 200 pc.more » « less
An official website of the United States government

