ABSTRACT We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star-forming galaxy at z ∼ 2 under the presence of strong quasar winds. Our simulations include multiphase ISM physics from the Feedback In Realistic Environments (FIRE) project and a novel implementation of hyper-refined accretion disc winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-centre clump with stellar mass $${\rm M}_{\star }\sim 10^{7}\, {\rm M}_{\odot }$$, effective radius $${\rm R}_{\rm 1/2\, \rm Clump}\sim 20\, {\rm pc}$$, and surface density $$\Sigma _{\star } \sim 10^{4}\, {\rm M}_{\odot }\, {\rm pc}^{-2}$$. The clump progenitor gas cloud is originally not star-forming, but strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches $${\rm SFR} \sim 50\, {\rm M}_{\odot }\, {\rm yr}^{-1}$$ and $$\Sigma _{\rm SFR} \sim 10^{4}\, {\rm M}_{\odot }\, {\rm yr}^{-1}\, {\rm kpc}^{-2}$$, converting most of the progenitor gas cloud into stars in ∼2 Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time (∼35 Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters. 
                        more » 
                        « less   
                    
                            
                            Swirls of FIRE: spatially resolved gas velocity dispersions and star formation rates in FIRE-2 disc environments
                        
                    
    
            ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10184315
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 496
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1620 to 1637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The cluster environment has been shown to affect the molecular gas content of cluster members, yet a complete understanding of this often subtle effect has been hindered due to a lack of detections over the full parameter space of galaxy star formation rates (SFRs) and stellar masses. Here, we stack CO(2–1) spectra ofz ∼ 1.6 cluster galaxies to explore the average molecular gas fractions of galaxies both at lower mass (log(M*/M⊙) ∼ 9.6) and further below the star-forming main sequence (SFMS; ΔMS ∼ −0.9) than other literature studies; this translates to a 3σgas mass limit of ∼7 × 109M⊙for stacked galaxies below the SFMS. We divide our sample of 54z ∼ 1.6 cluster galaxies, derived from the Spitzer Adaptation of the Red-Sequence Cluster Survey, into nine groupings, for which we recover detections in 8. The average gas content of the full cluster galaxy population is similar to coeval field galaxies matched in stellar mass and SFR. However, when further split by CO-undetected and CO-detected, we find that galaxies below the SFMS have statistically different gas fractions from the field scaling relations, spanning deficiencies to enhancements from 2σbelow to 3σabove the expected field gas fractions, respectively. These differences betweenz= 1.6 cluster and field galaxies below the SFMS are likely due to environmental processes, though further investigation of spatially resolved properties and more robust field scaling relation calibration in this parameter space are required.more » « less
- 
            Abstract The molecular gas in galaxies traces both the fuel for star formation and the processes that can enhance or suppress star formation. Observations of the molecular gas state can thus point to when and why galaxies stop forming stars. In this study, we present Atacama Large Millimeter/submillimeter Array observations of the molecular gas in galaxies evolving through the post-starburst phase. These galaxies have low current star formation rates (SFRs), regardless of the SFR tracer used, with recent starbursts ending within the last 600 Myr. We present CO (3–2) observations for three post-starburst galaxies, and dense gas HCN/HCO+/HNC (1–0) observations for six (four new) post-starburst galaxies. The post-starbursts have low excitation traced by the CO spectral-line energy distribution up to CO (3–2), more similar to early-type than starburst galaxies. The low excitation indicates that lower density rather than high temperatures may suppress star formation during the post-starburst phase. One galaxy displays a blueshifted outflow traced by CO (3–2). MaNGA observations show that the ionized gas velocity is disturbed relative to the stellar velocity field, with a blueshifted component aligned with the molecular gas outflow, suggestive of a multiphase outflow. Low ratios of HCO+/CO, indicating low fractions of dense molecular gas relative to the total molecular gas, are seen throughout post-starburst phase, except for the youngest post-starburst galaxy considered here. These observations indicate that the impact of any feedback or quenching processes may be limited to low excitation and weak outflows in the cold molecular gas during the post-starburst phase.more » « less
- 
            Abstract Simulations and observations suggest that galaxy interactions may enhance the star formation rate (SFR) in merging galaxies. One proposed mechanism is the torque exerted on the gas and stars in the larger galaxy by the smaller galaxy. We analyze the interaction torques and star formation activity on six galaxies from the FIRE-2 simulation suite with masses comparable to the Milky Way galaxy at redshiftz= 0. We trace the halos fromz= 3.6 toz= 0, calculating the torque exerted by the nearby galaxies on the gas in the central galaxy. We calculate the correlation between the torque and the SFR across the simulations for various mass ratios. For near-equal-stellar-mass-ratio interactions in the galaxy sample, occurring betweenz= 1.2−3.6, there is a positive and statistically significant correlation between the torque from nearby galaxies on the gas of the central galaxies and the SFR. For all other samples, no statistically significant correlation is found between the torque and the SFR. Our analysis shows that some, but not all, major interactions cause starbursts in the simulated Milky Way-mass galaxies, and that most starbursts are not caused by galaxy interactions. The transition from “bursty” at high redshift (z≳ 1) to “steady” star formation state at later times is independent of the interaction history of the galaxies, and most of the interactions do not leave significant imprints on the overall trend of the star formation history of the galaxies.more » « less
- 
            Abstract Feedback from supermassive black holes is believed to be a critical driver of the observed color bimodality of galaxies above the Milky Way mass scale. Active galactic nuclei (AGN) feedback has been modeled in many galaxy formation simulations, but most implementations have involved simplified prescriptions or a coarse-grained interstellar medium (ISM). We present the first set of Feedback In Realistic Environments (FIRE)-3 cosmological zoom-in simulations with AGN feedback evolved toz∼ 0, examining the impact of AGN feedback on a set of galaxies with halos in the mass range 1012–1013M⊙. These simulations combine detailed stellar and ISM physics with multichannel AGN feedback including radiative feedback, mechanical outflows, and, in some simulations, cosmic rays (CRs). We find that massive (>L*) galaxies in these simulations can match local scaling relations including the stellar mass–halo mass relation and theMBH–σrelation; in the stronger model with CRs, they also match the size–mass relation and the Faber–Jackson relation. Many of the massive galaxies in the simulations with AGN feedback have quenched star formation and elliptical morphologies, in qualitative agreement with observations. In contrast, simulations at the massive end without AGN feedback produce galaxies that are too massive and form stars too rapidly, are order-of-magnitude too compact, and have velocity dispersions well above Faber–Jackson. Despite these successes, the AGN models analyzed do not produce uniformly realistic galaxies when the feedback parameters are held constant: While the stronger model produces the most realistic massive galaxies, it tends to overquench the lower-mass galaxies. This indicates that further refinements of the AGN modeling are needed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    