skip to main content


Title: The Influence of Shear on Deep Convection Initiation. Part II: Simulations
Abstract

This study evaluates a hypothesis for the role of vertical wind shear in deep convection initiation (DCI) that was introduced in Part I by examining behavior of a series of numerical simulations. The hypothesis states, “Initial moist updrafts that exceed a width and shear threshold will ‘root’ within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state.” A theoretical model that embodied key elements of the hypothesis was developed in Part I, and the behavior of this model was explored within a multidimensional environmental parameter space. Remarkably similar behavior is evident in the simulations studied here to that of the theoretical model, both in terms of the temporal evolution of DCI and in the sensitivity of DCI to environmental parameters. Notably, both the simulations and theoretical model experience a bifurcation in outcomes, whereby nascent clouds that are narrower than a given initial radiusR0threshold quickly decay and those above theR0threshold undergo DCI. An important assumption in the theoretical model, which states that the cloud-relative flow of the background environmentVCRdetermines cloud radiusR, is scrutinized in the simulations. It is shown that storm-induced inflow is small relative toVCRbeyond a few kilometers from the updraft edge, andVCRtherefore plays a predominant role in transporting conditionally unstable air to the updraft. Thus, the critical role ofVCRin determiningRis validated.

 
more » « less
Award ID(s):
1661707 1928319
NSF-PAR ID:
10374354
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
79
Issue:
6
ISSN:
0022-4928
Page Range / eLocation ID:
p. 1691-1711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This article introduces a novel hypothesis for the role of vertical wind shear (“shear”) in deep convection initiation (DCI). In this hypothesis, initial moist updrafts that exceed a width and shear threshold will “root” within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state. In contrast, initial updrafts that do not exceed the aforementioned thresholds experience suppressed growth by shear-induced downward pressure gradient accelerations, will not root in a deep-enough steering current to increase their inflow, will narrow with time, and will succumb to entrainment-driven dilution. In the latter case, an externally driven lifting mechanism is required to sustain deep convection, and deep convection will not persist in the absence of such lifting mechanism. A theoretical model is developed from the equations of motion to further explore this hypothesis. The model indicates that shear generally suppresses DCI, raising the initial subcloud updraft width that is necessary for it to occur. However, there is a pronounced bifurcation in updraft growth in the model after the onset of convection. Sufficiently wide initial updrafts grow and eventually achieve a steady state. In contrast, insufficiently wide initial updrafts shrink with time and eventually decay completely without external support. A sharp initial updraft radius threshold discriminates between these two outcomes. Thus, consistent with our hypothesis and observations, shear inhibits DCI in some situations, but facilitates it in others.

     
    more » « less
  2. Abstract

    Supercell thunderstorms develop low-level rotation via tilting of environmental horizontal vorticity (ωh) by the updraft. This rotation induces dynamic lifting that can stretch near-surface vertical vorticity into a tornado. Low-level updraft rotation is generally thought to scale with 0–500 m storm-relative helicity (SRH): the combination of storm-relative flow, |SRF|, |ωh|, and cosϕ(whereϕis the angle betweenSRFandωh). It is unclear how much influence each component of SRH has in intensifying the low-level mesocyclone. This study surveys these three components using self-organizing maps (SOMs) to distill 15 906 proximity soundings for observed right-moving supercells. Statistical analyses reveal the component most highly correlated to SRH and to streamwise vorticity (ωs) in the observed profiles is |ωh|. Furthermore, |ωh| and |SRF| are themselves highly correlated due to their shared dependence on the hodograph length. The representative profiles produced by the SOMs were combined with a common thermodynamic profile to initialize quasi-realistic supercells in a cloud model. The simulations reveal that, across a range of real-world profiles, intense low-level mesocyclones are most closely linked toωhandSRF, while the angle between them appears to be mostly inconsequential.

    Significance Statement

    About three-fourths of all tornadoes are produced by rotating thunderstorms (supercells). When the part of the storm near cloud base (approximately 1 km above the ground) rotates more strongly, the chance of a tornado dramatically increases. The goal of this study is to identify the simplest characteristic(s) of the environmental wind profile that can be used to forecast the likelihood of strong cloud-base rotation. This study concludes that the most important ingredients for storm rotation are the magnitudes of the horizontal vertical wind shear between the surface and 500 m and the storm inflow wind, irrespective of their relative directions. This finding may lead to improved operational identification of environments favoring tornado formation.

     
    more » « less
  3. Abstract

    This study examines two factors impacting initiation of moist deep convection: free-tropospheric environmental relative humidity (ϕE) and horizontal scale of subcloud ascent (Rsub), the latter exerting a dominant control on cumulus cloud width. A simple theoretical model is used to formulate a “scale selection” hypothesis: that a minimumRsubis required for moist convection to go deep, and that this minimum scale decreases with increasingϕE. Specifically, the ratio ofto saturation deficit (1 −ϕE) must exceed a certain threshold value that depends on cloud-layer environmental lapse rate. Idealized, large-eddy simulations of moist convection forced by horizontally varying surface fluxes show strong sensitivity of maximum cumulus height to bothϕEandRsubconsistent with the hypothesis. IncreasingRsubby only 300–400 m can lead to a large increase (>5 km) in cloud height. A passive tracer analysis shows that the bulk fractional entrainment rate decreases rapidly withRsubbut depends little onϕE. However, buoyancy dilution increases as eitherRsuborϕEdecreases; buoyancy above the level of free convection is rapidly depleted in dry environments whenRsubis small. While deep convective initiation occurs with an increase in relative humidity of the near environment from moistening by earlier convection, the importance of this moisture preconditioning is inconclusive as it is accompanied by an increase inRsub. Overall, it is concluded that small changes toRsubdriven by external forcing or by convection itself could be a dominant regulator of deep convective initiation.

     
    more » « less
  4. Abstract

    This study investigates the evolution of temperature and lifetime of evaporating, supercooled cloud droplets considering initial droplet radius (r0) and temperature (), and environmental relative humidity (RH), temperature (T), and pressure (P). The time (tss) required by droplets to reach a lower steady-state temperature (Tss) after sudden introduction into a new subsaturated environment, the magnitude of ΔT=TTss, and droplet survival time (tst) atTssare calculated. The temperature difference (ΔT) is found to increase withT, and decrease with RH andP. ΔTwas typically 1–5 K lower thanT, with highest values (∼10.3 K) for very low RH, lowP, andTcloser to 0°C. Results show thattssis <0.5 s over the range of initial droplet and environmental conditions considered. Larger droplets (r0= 30–50μm) can survive atTssfor about 5 s to over 10 min, depending on the subsaturation of the environment. For higher RH and larger droplets, droplet lifetimes can increase by more than 100 s compared to those with droplet cooling ignored.Tssof the evaporating droplets can be approximated by the environmental thermodynamic wet-bulb temperature. Radiation was found to play a minor role in influencing droplet temperatures, except for larger droplets in environments close to saturation. The implications for ice nucleation in cloud-top generating cells and near cloud edges are discussed. UsingTssinstead ofTin widely used parameterization schemes could lead to enhanced number concentrations of activated ice-nucleating particles (INPs), by a typical factor of 2–30, with the greatest increases (≥100) coincident with low RH, lowP, andTcloser to 0°C.

    Significance Statement

    Cloud droplet temperature plays an important role in fundamental cloud processes like droplet growth and decay, activation of ice-nucleating particles, and determination of radiative parameters like refractive indices of water droplets. Near cloud boundaries such as cloud tops, dry air mixes with cloudy air exposing droplets to environments with low relative humidities. This study examines how the temperature of a cloud droplet that is supercooled (i.e., has an initial temperature < 0°C) evolves in these subsaturated environments. Results show that when supercooled cloud droplets evaporate near cloud boundaries, their temperatures can be several degrees Celsius lower than the surrounding drier environment. The implications of this additional cooling of droplets near cloud edges on ice particle formation are discussed.

     
    more » « less
  5. Abstract Idealized numerical simulations of Mesoscale Convective Systems (MCSs) over a range of instabilities and shears were conducted to examine low-frequency gravity waves generated during initial and mature stages of convection. In all simulations, at initial updraft development a first-order wave was generated by heating extending the depth of the troposphere. Additional first-order wave modes were generated each time the convective updraft reintensified. Each of these waves stabilized the environment in advance of the system. As precipitation descended below cloud base, and as a stratiform precipitation region developed, second-order wave modes were generated by cooling extending from the mid-levels to the surface. These waves destabilized the environment ahead of the system but weakened the 0-5 km shear. Third-order wave modes could be generated by mid-level cooling caused by rear inflow intensification; these wave modes cooled the mid-levels destabilizing the environment. The developing stage of each MCS was characterized by a cyclical process: developing updraft, generation of n = 1 wave, increase in precipitation, generation of n = 2 wave, and subsequent environmental destabilization reinvigorating the updraft. After rearward expansion of the stratiform region, the MCSs entered their mature stage and the method of updraft reinvigoration shifted to absorbing discrete convective cells produced in advance of each system. Higher-order wave modes destabilized the environment making it more favorable to development of these cells and maintenance of the MCS. As initial simulation shear or instability increased, the transition from cyclical wave/updraft development to discrete cell/updraft development occurred more quickly. 
    more » « less