skip to main content


Search for: All records

Award ID contains: 1661707

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This article introduces a novel hypothesis for the role of vertical wind shear (“shear”) in deep convection initiation (DCI). In this hypothesis, initial moist updrafts that exceed a width and shear threshold will “root” within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state. In contrast, initial updrafts that do not exceed the aforementioned thresholds experience suppressed growth by shear-induced downward pressure gradient accelerations, will not root in a deep-enough steering current to increase their inflow, will narrow with time, and will succumb to entrainment-driven dilution. In the latter case, an externally driven lifting mechanism is required to sustain deep convection, and deep convection will not persist in the absence of such lifting mechanism. A theoretical model is developed from the equations of motion to further explore this hypothesis. The model indicates that shear generally suppresses DCI, raising the initial subcloud updraft width that is necessary for it to occur. However, there is a pronounced bifurcation in updraft growth in the model after the onset of convection. Sufficiently wide initial updrafts grow and eventually achieve a steady state. In contrast, insufficiently wide initial updrafts shrink with time and eventually decay completely without external support. A sharp initial updraft radius threshold discriminates between these two outcomes. Thus, consistent with our hypothesis and observations, shear inhibits DCI in some situations, but facilitates it in others.

     
    more » « less
  2. Abstract

    This study synthesizes the results of 13 high-resolution simulations of deep convective updrafts forming over idealized terrain using environments observed during the RELAMPAGO and CACTI field projects. Using composite soundings from multiple observed cases, and variations upon them, we explore the sensitivity of updraft properties (e.g., size, buoyancy, and vertical pressure gradient forces) to influences of environmental relative humidity, wind shear, and mesoscale orographic forcing that support or suppress deep convection initiation (CI). Emphasis is placed on differentiating physical processes affecting the development of updrafts (e.g., entrainment-driven dilution of updrafts) in environments typifying observed successful and null (i.e., no CI despite affirmative operational forecasts) CI events. Thermally induced mesoscale orographic lift favors the production of deep updrafts originating from ∼1- to 2-km-wide boundary layer thermals. Simulations without terrain forcing required much larger (∼5-km-wide) thermals to yield precipitating convection. CI outcome was quite sensitive to environmental relative humidity; updrafts with increased buoyancy, depth, and intensity thrived in otherwise inhospitable environments by simply increasing the free-tropospheric relative humidity. This implicates the entrainment of free-tropospheric air into updrafts as a prominent governor of CI, consistent with previous studies. Sensitivity of CI to the environmental wind is manifested by 1) low-level flow affecting the strength and depth of mesoscale convergence along the terrain, and 2) clouds encountering updraft-suppressing pressure gradient forces while interacting with vertical wind shear in the free troposphere. Among the ensemble of thermals occurring in each simulation, the widest deep updrafts in each simulation were the most sensitive to environmental influences.

     
    more » « less
  3. Abstract

    This study evaluates a hypothesis for the role of vertical wind shear in deep convection initiation (DCI) that was introduced in Part I by examining behavior of a series of numerical simulations. The hypothesis states, “Initial moist updrafts that exceed a width and shear threshold will ‘root’ within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state.” A theoretical model that embodied key elements of the hypothesis was developed in Part I, and the behavior of this model was explored within a multidimensional environmental parameter space. Remarkably similar behavior is evident in the simulations studied here to that of the theoretical model, both in terms of the temporal evolution of DCI and in the sensitivity of DCI to environmental parameters. Notably, both the simulations and theoretical model experience a bifurcation in outcomes, whereby nascent clouds that are narrower than a given initial radiusR0threshold quickly decay and those above theR0threshold undergo DCI. An important assumption in the theoretical model, which states that the cloud-relative flow of the background environmentVCRdetermines cloud radiusR, is scrutinized in the simulations. It is shown that storm-induced inflow is small relative toVCRbeyond a few kilometers from the updraft edge, andVCRtherefore plays a predominant role in transporting conditionally unstable air to the updraft. Thus, the critical role ofVCRin determiningRis validated.

     
    more » « less
  4. null (Ed.)
    Abstract Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of: i) the mesoscale and boundary layer flow, and ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3-5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1-3-km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment. 
    more » « less
  5. null (Ed.)
    Abstract This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized. 
    more » « less
  6. null (Ed.)
    Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain. 
    more » « less
  7. null (Ed.)
    Abstract The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome. 
    more » « less
  8. Abstract On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain. 
    more » « less
  9. Abstract On 8 February 2018, a supercell storm produced gargantuan (> 15 cm or > 6 inches in maximum dimension) hail as it moved over the heavily populated city of Villa Carlos Paz in Córdoba Province, Argentina, South America. Observations of gargantuan hail are quite rare, but the large population density here yielded numerous witnesses and social media pictures and videos from this event that document multiple large hailstones. The storm was also sampled by the newly installed operational polarimetric C-band radar in Córdoba. During the RELAMPAGO campaign, the authors interviewed local residents about their accounts of the storm, and uncovered additional social media video and photographs revealing extremely large hail at multiple locations in town. This article documents the case, including the meteorological conditions supporting the storm (with the aid of a high-resolution WRF simulation), the storm’s observed radar signatures, and three noteworthy hailstones observed by residents. These hailstones include a freezer-preserved 4:48-inch (11:38-cm) maximum dimension stone that was scanned with a 3D infrared laser scanner, a 7:1-inch (18-cm) maximum dimension stone, and a hailstone photogrammetrically estimated to be between 7:4 and 9:3 inches (18:8-23:7- cm) in maximum dimension, which is close to or exceeds the world record for maximum dimension. Such a well-observed case is an important step forward in understanding environments and storms that produce gargantuan hail, and ultimately how to anticipate and detect such extreme events. (Capsule Summary) Gargantuan hail fell in Argentina on 8 February 2018, including one hailstone that is possibly a world-record for maximum dimension. We document eyewitness and social media accounts of the hail, and analyze the parent storm and its environment. 
    more » « less