Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive.
more »
« less
Logarithmic Growth of Dikes From a Depressurizing Magma Chamber
Abstract Dike propagation is an intrinsically multiphase problem, where deformation and fluid flow are intricately coupled in a fracture process. Here we perform the first fully coupled simulations of dike propagation in two dimensions, accounting for depressurization of a circular magma chamber, dynamic fluid flow, fracture formation, and elastic deformation. Despite the complexity of the governing equations, we observe that the lengthening is well explained by a simple model, whereis the dike length,is time, andandare constants. We compare the model to seismic data from eight dikes in Iceland and Ethiopia, and, in spite of the assumption of plane strain, we find good agreement between the data and the model. In addition, we derive an approximate model for the depressurization of the chamber with the dike length. These models may help forecast the growth of lateral dikes and magma chamber depressurization.
more »
« less
- Award ID(s):
- 1662452
- PAR ID:
- 10374382
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The mechanisms underlying observed global patterns of partitioning precipitation () to evapotranspiration () and runoff () are controversially debated. We test the hypothesis that asynchrony between climatic water supply and demand is sufficient to explain spatio‐temporal variability of water availability. We developed a simple analytical model forthat is determined by four dimensionless characteristics of intra‐annual water supply and demand asynchrony. The analytical model, populated with gridded climate data, accurately predicted global runoff patterns within 2%–4% of independent estimates from global climate models, with spatial patterns closely correlated to observations (). The supply‐demand asynchrony hypothesis provides a physically based explanation for variability of water availability using easily measurable characteristics of climate. The model revealed widespread responsiveness of water budgets to changes in climate asynchrony in almost every global region. Furthermore, the analytical model using global averages independently reproduced the Budyko curve () providing theoretical foundation for this widely used empirical relationship.more » « less
-
Abstract The Whitham equation was proposed as a model for surface water waves that combines the quadratic flux nonlinearityof the Korteweg–de Vries equation and the full linear dispersion relationof unidirectional gravity water waves in suitably scaled variables. This paper proposes and analyzes a generalization of Whitham's model to unidirectional nonlinear wave equations consisting of a general nonlinear flux functionand a general linear dispersion relation. Assuming the existence of periodic traveling wave solutions to this generalized Whitham equation, their slow modulations are studied in the context of Whitham modulation theory. A multiple scales calculation yields the modulation equations, a system of three conservation laws that describe the slow evolution of the periodic traveling wave's wavenumber, amplitude, and mean. In the weakly nonlinear limit, explicit, simple criteria in terms of generalandestablishing the strict hyperbolicity and genuine nonlinearity of the modulation equations are determined. This result is interpreted as a generalized Lighthill–Whitham criterion for modulational instability.more » « less
-
Abstract As the abyssal oceans warm, stratification is also expected to change in response. This change may impact mixing and vertical transport by altering the buoyancy flux, internal wave generation, and turbulent dissipation. In this study, repeated surveys of three hydrographic sections in the Southwest Pacific Basin between the 1990s and 2010s are used to estimate the change in buoyancy frequency. We find that below the°C isotherm,is on average reduced by a scaling factor of, a 12% reduction, per decade that intensifies with depth. At°C, we observe the biggest change:, or a 29% reduction per decade. Within the same period, the magnitude of vertical diffusive heat flux is also reduced by about, although this estimate is sensitive to the choice of estimated diffusivity. Finally, implications of these results for the heat budget and global ocean circulation are qualitatively discussed.more » « less
-
Abstract Venus is an exceptional natural experiment to test our understanding of atmospheric sulfur chemistry. Previous modeling efforts have focused on understanding either the middle or lower atmosphere. In this work, we performed the first full atmosphere analysis of the chemical transport processes on Venus from the surface to 110 km using a 1‐D diffusion model with photochemistry. We focused on the cycling of chemical species between the upper and lower atmospheres and interactions between distinct species groups including SO, CO + OCS, chlorides, NO, O, and S. We tested different eddy diffusivity profiles and investigated their influences on the vertical profiles of important species. We find that the assumed boundary conditions in previous models strongly impacted their simulation results. This has a particularly large effect for SO. We find the high SOabundance in the lower atmosphere is readily transported into the middle atmosphere, far exceeding observed values. This implies some yet unknown chemistry or process limiting SOmixing. We summarize outstanding questions raised by this work and note chemical reactions that should be the highest priority for future laboratory studies and ab initio calculations.more » « less
An official website of the United States government
