skip to main content


Title: Numerical Simulations of the Geospace Response to the Arrival of an Idealized Perfect Interplanetary Coronal Mass Ejection
Abstract

Previously, Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825) created estimates for a “perfect” interplanetary coronal mass ejection and performed simple calculations for the response of geospace, including. In this study, these estimates are used to drive a coupled magnetohydrodynamic‐ring current‐ionosphere model of geospace to obtain more physically accurate estimates of the geospace response to such an event. The sudden impulse phase is examined and compared to the estimations of Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825). The physics‐based simulation yields similar estimates for Dst rise, magnetopause compression, and equatorialvalues as the previous study. However, results diverge away from the equator.values in excess of 30 nT/s are found as low asmagnetic latitude. Under southward interplanetary magnetic field conditions, magnetopause erosion combines with strong region one Birkeland currents to intensify theresponse. Values obtained here surpass those found in historically recorded events and set the upper threshold of extreme geomagnetically induced current activity at Earth.

 
more » « less
Award ID(s):
1663770
NSF-PAR ID:
10367453
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
19
Issue:
2
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The 400 worst‐case severe environments for surface charging detected at Los Alamos National Laboratory satellites during the years of 1990–2005 as binned by the definitions of four criteria developed by Matéo‐Vélez et al. (2018,https://doi.org/10.1002/2017sw001689) and the solar wind and Interplanetary Magnetic Field (IMF) parameters and geomagnetic activity indices are analyzed. The conducted analysis shows that only Auroral Electrojet/Auroral Lower index determines the highest risk for severe environments for surface charging to happen. The presence of a substorm with the southward turning pattern in IMFindicates that the environment can be severe for surface charging to occur but this environment will not depend on whether a substorm was moderate or intense. No clear dependence on IMFis found for risk to a severe environment to occur. Appearances of severe environments for surface charging do not necessarily require high values ofKp(Planetarische Kennziffer) and no storm is needed for such an event to be detected. Among solar wind parameters, solar wind velocityis directly related to the highest risk of severe environments, dependent on thevalue; and number densityis of no importance. Two criteria for severe environment events based on the enhancements of low energy particle fluxes exhibit clearer dependencies on the solar wind and IMF parameters and geomagnetic activity indices with more distinct patterns in their time history.

     
    more » « less
  2. Abstract

    Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018,https://doi.org/10.1063/1.5039687). In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.

     
    more » « less
  3. Abstract

    Interplanetary (IP) shocks drive magnetosphere‐ionosphere (MI) current systems that in turn are associated with ground magnetic perturbations. Recent work has shown that IP shock impact angle plays a significant role in controlling the subsequent geomagnetic activity and magnetic perturbations; for example, highly inclined shocks drive asymmetric MI responses due to interhemispherical asymmetric magnetospheric compressions, while almost head‐on shocks drive more symmetric MI responses. However, there are few observations confirming that inclined shocks drive such asymmetries in the high‐latitude ground magnetic response. We use data from a chain of Antarctic magnetometers, combined with magnetically conjugate stations on the west coast of Greenland, to test these model predictions (Oliveira & Raeder, 2015,https://doi.org/10.1002/2015JA021147; Oliveira, 2017,https://doi.org/10.1007/s13538-016-0472-x). We calculate the time derivative of the magnetic field () in each hemisphere separately. Next, we examine the ratio of Northern to Southern Hemisphereintensities and the time differences between the maximumimmediately following the impact of IP shocks. We order these results according to shock impact angles obtained from a recently published database with over 500 events and discuss how shock impact angles affect north‐south hemisphere asymmetries in the ground magnetic response. We find that the hemisphere the shock strikes first usually has (1) the first response inand (2) the most intense response in. Additionally, we show that highly inclined shocks can generate high‐latitude ground magnetic responses that differ significantly from predictions based on models that assume symmetric driving conditions.

     
    more » « less
  4. Abstract

    Estimates of ice volume over the last 120 ka, from marine isotope Stage (MIS) 5d (∼110 ka) through MIS 3 (60–26 ka) are uncertain. Weiss et al. (2022,https://doi.org/10.1029/2021PA004361) offer an innovative new constraint on past sea level using the oxygen isotopes (δ18O) of planktic (surface and thermocline dwelling) foraminifers to infer the salinity of the Sulu Sea in the Indo‐Pacific Ocean and assess flow through the Karimata Strait (Indonesia) over the last glaciation. Based on the timing of Karimata Strait flooding, the study concludes that local relative sea level in the Karimata Strait was >−8  6 m during MIS 5c (∼100 ka) and >−12  6 m during MIS 5a (∼80 ka), relative to present. For MIS 3, a maximum possible relative sea level of −16  6 m is determined. Here, these results are placed into the context of current knowledge of last glacial sea‐level change and the implications for climate forcings and feedbacks (e.g., global average surface temperature and greenhouse gases) and ice sheet growth are discussed. By tracing past ocean circulation patterns that are modulated by the depth of shallow straits such as the Karimata Strait, Weiss et al. (2022,https://doi.org/10.1029/2021PA004361) provide independent constraints on local sea level, which are essential for improving global mean sea level reconstructions on late Pleistocene glacial‐interglacial cycles.

     
    more » « less
  5. Abstract

    The effects of nutrient pollution on coral reef ecosystems are multifaceted. Numerous experiments have sought to identify the physiological effects of nutrient enrichment on reef‐building corals, but the results have been variable and sensitive to choices of nutrient quantity, chemical composition and exposure duration.

    To test the effects of chronic, ecologically relevant nutrient enrichment on coral growth and photophysiology, we conducted a 5‐week continuous dosing experiment on two Hawaiian coral species,Porites compressaandPocillopora acuta. We acclimated coral fragments to five nutrient concentrations (0.1–7 µMand 0.06–2.24 µM) with constant stoichiometry 2.5:1 nitrate to phosphate) bracketing in situ observations from reefs throughout the Pacific.

    Nutrient enrichment linearly increased photophysiological performance of both species within 3 weeks. The effect of nutrients onP. acutaphotochemical efficiency increased through time while a consistent response inP. compressaindicated acclimation to elevated nutrients within 5 weeks. Endosymbiont densities and total chlorophyll concentrations also increased proportionally with nutrient enrichment inP. acuta, but not inP. compressa, revealing contrasting patterns of host–symbiont acclimatization.

    The two species also exhibited contrasting effects of nutrient enrichment on skeletal growth. Calcification was enhanced at low nutrient enrichment (1 µM) inP. acuta, but comparable to the control at higher concentrations, whereas calcification was reduced inP. compressa(30%–35%) above 3 µM.

    Stable isotope analysis revealed species‐specific nitrogen uptake dynamics in the coral–algal symbiosis. The endosymbionts ofP. acutaexhibited increased nitrogen uptake (decreased δ15N) and incorporation (19%–31% decrease in C:N ratios) across treatments. In contrast,P. compressaendosymbionts maintained constant δ15N values and low levels of nitrogen incorporation (9%–11% decrease in C:N ratios). The inability ofP. acutato regulate endosymbiont nutrient uptake may indicate an emerging destabilization in the coral–algal symbiosis under nutrient enrichment that could compromise resistance to additional environmental stressors.

    Our results highlight species‐specific differences in the coral–algal symbiosis, which influence responses to chronic nutrient enrichment. These findings showcase how symbioses can vary among closely related taxa and underscore the importance of considering how life‐history traits modify species response to environmental change.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less