skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multidisciplinary Constraints on the Thermal‐Chemical Boundary Between Earth's Core and Mantle
Abstract Heat flux from the core to the mantle provides driving energy for mantle convection thus powering plate tectonics, and contributes a significant fraction of the geothermal heat budget. Indirect estimates of core‐mantle boundary heat flow are typically based on petrological evidence of mantle temperature, interpretations of temperatures indicated by seismic travel times, experimental measurements of mineral melting points, physical mantle convection models, or physical core convection models. However, previous estimates have not consistently integrated these lines of evidence. In this work, an interdisciplinary analysis is applied to co‐constrain core‐mantle boundary heat flow and test the thermal boundary layer (TBL) theory. The concurrence of TBL models, energy balance to support geomagnetism, seismology, and review of petrologic evidence for historic mantle temperatures supportsQCMB∼15 TW, with all except geomagnetism supporting as high as ∼20 TW. These values provide a tighter constraint on core heat flux relative to previous work. Our work describes the seismic properties consistent with a TBL, and supports a long‐lived basal mantle molten layer through much of Earth's history.  more » « less
Award ID(s):
1554554 1664332 1751664
PAR ID:
10374385
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
3
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Earth’s magnetic field is generated by turbulent motion in its fluid outer core. Although the bulk of the outer core is vigorously convecting and well mixed, some seismic, geomagnetic and geodynamic evidence suggests that a global stably stratified layer exists at the top of Earth’s core. Such a layer would strongly influence thermal, chemical and momentum exchange across the core–mantle boundary and thus have important implications for the dynamics and evolution of the core. Here we argue that the relevant scenario is not global stratification, but rather regional stratification arising solely from the lateral variations in heat flux at the core–mantle boundary. Using our extensive suite of numerical simulations of the dynamics of the fluid core with het- erogeneous core–mantle boundary heat flux, we predict that thermal regional inversion layers extend hundreds of kilometres into the core under anomalously hot regions of the lowermost mantle. Although the majority of the outermost core remains actively convecting, sufficiently large and strong regional inversion layers produce a one-dimensional temperature profile that mimics a globally stratified layer below the core–mantle boundary—an apparent thermal stratification despite the average heat flux across the core–mantle boundary being strongly superadiabatic. 
    more » « less
  2. Abstract The Earth's lowermost mantle is characterized by two large low shear velocity provinces (LLSVPs). The regions outside the LLSVPs have been suggested to be strongly influenced by subducted slabs and, therefore, much colder than the LLSVPs. However, localized low‐velocity seismic anomalies have been detected in the subduction‐influenced regions, whose origin remains unclear. Here, three‐dimensional geodynamic calculations are performed, and they show that linear, ridge‐like hot thermal anomalies, or thermal ridges, form in the relatively cold, downwelling regions of the lowermost mantle. Like the formation of Richter rolls due to sublithosphere small‐scale convection (SSC), the thermal ridges form as a result of SSC from the basal thermal boundary layer and they extend in directions parallel to the surrounding mantle flow. The formation of thermal ridges in subduction regions of the lowermost mantle is very sensitive to the thermal structures of the subducted materials, and thermal heterogeneities brought to the bottom of the mantle by subducting slabs greatly promote the formation of thermal ridges. The formation of thermal ridges is also facilitated by the increase of core‐mantle boundary heat flux and vigor of lowermost mantle convection. The thermal ridges may explain the low‐velocity seismic anomalies outside of the LLSVPs in the lowermost mantle. The results suggest that the relatively cold, subduction‐influenced regions of the Earth's lowermost mantle may contain localized hot anomalies. 
    more » « less
  3. We use three‐dimensional numerical experiments of thin shell convection to explore what effects an expected latitudinal variation in solar insolation may have on a convection. We find that a global flow pattern of upwelling equatorial regions and downwelling polar regions, linked to higher and lower surface temperatures (Ts), respectively, is preferred. Due to the gradient inTs, boundary layer thicknesses vary from equatorial lows to polar highs, and polar oriented flow fields are established. AHadley cell‐type configuration with two hemispheric‐scale convective cells emerges with heat flow enhanced along the equator and suppressed poleward. The poleward transport pattern appears robust under a range of basal and mixed heating, isoviscous and temperature‐dependent viscosity, vigor of convection, and different degrees ofTsvariations. Our findings suggest that a latitudinal variation inTsis an important effect for convection within the thin ice shells of the outer satellites, becoming increasingly important as solar luminosity increases. VariableTsmodels predict lower heat flow and a more compressional regime near downwellings at higher latitudes, and higher heat flow and a more extensional regime near the equator. Within the ice shell, Hadley style flow could lead to large‐scale anisotropic ice properties that might be detectable with future seismic or electro‐magnetic observations. 
    more » « less
  4. Abstract The existence of a thin, weak asthenospheric layer beneath Earth’s lithospheric plates is consistent with existing geological and geophysical constraints, including Pleistocene glacio-isostatic adjustment, modeling of gravity anomalies, studies of seismic anisotropy, and post-seismic rebound. Mantle convection models suggest that a pronounced weak zone beneath the upper thermal boundary layer (lithosphere) may be essential to the plate tectonic style of convection found on Earth. The asthenosphere is likely related to partial melting and the presence of water in the sub-lithospheric mantle, further implying that the long-term evolution of the Earth may be controlled by thermal regulation and volatile recycling that maintain a geotherm that approaches the wet mantle solidus at asthenospheric depths. 
    more » « less
  5. SUMMARY The Earth’s magnetic field is generated by a dynamo in the outer core and is crucial for shielding our planet from harmful radiation. Despite the established importance of the core–mantle boundary (CMB) heat flux as driver for the dynamo, open questions remain about how heat flux heterogeneities affect the magnetic field. Here, we explore the distribution of the CMB heat flux on Earth and its changes over time using compressible global 3-D mantle convection models in the geodynamic modelling software ASPECT. We discuss the use of the consistent boundary flux method as a tool to more accurately compute boundary heat fluxes in finite element simulations and the workflow to provide the computed heat flux patterns as boundary conditions in geodynamo simulations. Our models use a plate reconstruction throughout the last 1 billion years—encompassing the complete supercontinent cycle—to determine the location and sinking speed of subducted plates. The results show how mantle upwellings and downwellings create localized heat flux anomalies at the CMB that can vary drastically over Earth’s history and depend on the properties and evolution of the lowermost mantle as well as the surface subduction zone configuration. The distribution of hot and cold structures at the CMB changes throughout the supercontinent cycle in terms of location, shape and number, indicating that these structures fluctuate and might have looked very differently in Earth’s past. We estimate the resulting amplitude of spatial heat flux variations, expressed by the ratio of peak-to-peak amplitude to average heat flux, q*, to be at least 2. However, depending on the material properties and the adiabatic heat flux out of the core, q* can easily reach values >30. For a given set of material properties, q* generally varies by 30–50 per cent over time. Our results have implications for understanding the Earth’s thermal evolution and the stability of its magnetic field over geological timescales. They provide insights into the potential effects of the mantle on the magnetic field and pave the way for further exploring questions about the nucleation of the inner core and the past state of the lowermost mantle. 
    more » « less