skip to main content


Title: LoadDef: A Python‐Based Toolkit to Model Elastic Deformation Caused by Surface Mass Loading on Spherically Symmetric Bodies

Temporal variations of surface masses, such as the hydrosphere and atmosphere of the Earth, load the surfaces of planetary bodies causing temporal variations in deformation. Surface shear forces and gravitational fields also drive ongoing planetary deformation. Characterizing the spatiotemporal patterns of planetary deformation can constrain allowable models for the interior structure of a planetary body as well as for the distribution of surface and body forces. Pertinent applications include hydrology, glaciology, geodynamics, atmospheric science, and climatology. To address the diversity of emerging applications, we introduce a software suite calledLoadDefthat provides a collection of modular functions for modeling planetary deformation within a self‐consistent,Python‐based computational framework. Key features ofLoadDefinclude computation of real‐valued potential, load, and shear Love numbers for self‐gravitating and spherically symmetric planetary models; computation of Love‐number partial derivatives with respect to planetary density and elastic structure; computation of displacement, gravity, tilt, and strain load Green's functions; and computation of three‐component surface displacements induced by surface mass loading. At a most basic level, only a planetary‐structure model and a mass‐load model must be supplied as input toLoadDefto utilize all the main features of the software. The end‐to‐end forward‐modeling capabilities for mass‐loading applications lay the foundation for sensitivity studies and geodetic tomography.LoadDefresults have been validated with Global Navigation Satellite System observations and verified against independent software and published results. As a case study, we useLoadDefto predict the solid Earth's elastic response to ocean tidal loading across the western United States.

 
more » « less
NSF-PAR ID:
10374388
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
6
Issue:
2
ISSN:
2333-5084
Page Range / eLocation ID:
p. 311-323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This article presents a comprehensive benchmark study for the newly updated and publicly available finite element code CitcomSVE for modeling dynamic deformation of a viscoelastic and incompressible planetary mantle in response to surface and tidal loading. A complete description of CitcomSVE’s finite element formulation including calculations of the sea‐level change, polar wander, apparent center of mass motion, and removal of mantle net rotation is presented. The 3‐D displacements and displacement rates and the gravitational potential anomalies are solved with CitcomSVE for three benchmark problems using different spatial and temporal resolutions: (a) surface loading of single harmonics, (b) degree‐2 tidal loading, and (c) the ICE‐6G GIA model. The solutions are compared with semi‐analytical solutions for error analyses. The benchmark calculations demonstrate the accuracy and efficiency of CitcomSVE. For example, for a typical ICE‐6G GIA calculation with a 122‐ky glaciation‐deglaciation history, time increment of 100 years, and ∼50 km (or ∼0.5°) surface horizontal resolution, it takes ∼4.5 hr on 96 CPU cores to complete with about 1% and 5% errors for displacements and displacement rates, respectively. Error analyses shows that CitcomSVE achieves a second order accuracy, but the errors are insensitive to temporal resolution. CitcomSVE achieves the parallel computational efficiency >75% for using up to 6,144 CPU cores on a parallel supercomputer. With its accuracy, computational efficiency and its open‐source public availability, CitcomSVE provides a powerful tool for modeling viscoelastic deformation of a planetary mantle with 3‐D mantle viscous and elastic structures in response to surface and tidal loading problems.

     
    more » « less
  2. Abstract

    Seismicity of several intraplate seismic zones in the North American midcontinent is believed to be related to reactivation of ancient faults in Precambrian continental rifts by the contemporary stress field. Existence of such a rift system beneath the Wabash Valley Seismic Zone (WVSZ) is not clear. Here we obtained a crustal structural image along a 300‐km‐long profile across WVSZ using a dense linear seismic array. We first calculated teleseismic receiver functions of stations and applied the Common‐Conversion‐Point stacking method to image crustal interfaces and the Moho. We then used ambient noise cross correlation to obtain phase and group velocities of Rayleigh and Love waves. Finally, we jointly inverted the receiver function and surface wave dispersion data to determine shear wave velocity structure along the profile. The results show a thick (50‐ to 60‐km) crust with a typical Proterozoic crustal layering: a 1‐ to 2‐km thick Phanerozoic sedimentary layer, an upper crust ∼15 km thick, and a 30‐ to 40‐km‐thick lower crust. The unprecedented high‐resolution image also reveals a 50‐km‐wide high‐velocity body above an uplifted Moho and several velocity anomalies in the upper and middle crust beneath the La Salle Deformation Belt. We interpreted them as features produced by magmatic intrusions in a failed, immature continental rift during the end of Precambrian. Current seismicity in WVSZ is likely due to reactivation of ancient faults of the rift system by a combination of stress fields from the far‐field plate motion and prominent crustal and upper mantle heterogeneities in the region.

     
    more » « less
  3. Abstract

    Both the surface processes associated with large intracontinental basins and their underlying geodynamic mechanisms remain unclear. Proposed models include flexural deformation due to orogenic loading, isostatic subsidence in response to lithosphere extension, and dynamic subsidence arising from sublithospheric mantle downwelling. Here we use forward landscape evolution modeling to quantitatively investigate the surface process response to various types of tectonic subsidence during intraplate sedimentation. We find that isostatic subsidence causes continuous accumulation of sediment through time with a largely stable pattern of fluvial drainage. In contrast, dynamic subsidence results in fast intraplate sedimentation followed by regional unconformities and continental‐scale reorganization of fluvial networks. Our quantitative simulations reveal that the traditional 1‐D isostatic backstripping approach may lead to erroneous estimates of the past tectonic subsidence from the preserved sedimentary records: for lithospheric elastic thickness (Te) < 50 km, the flexural effect leads to larger (smaller) apparent subsidence at the center (rim) of the basin, compared to the true subsidence; forTe > 50 km, broadscale flexural support leads to underestimated subsidence throughout the basin. Subparallel tilted strata are a unique stratigraphic feature associated with spatially migratory dynamic subsidence followed by dynamic rebound. Their characteristic slope provides a quantitative constraint on the spatiotemporal pattern of dynamic subsidence. The Cretaceous Western Interior Seaway provides an example of this type of basin fill. We demonstrate that quantitative, forward landscape evolution modeling can help decipher the relationship between intraplate sedimentation and the underlying tectonic drivers.

     
    more » « less
  4. Biological tissues, such as cartilage, tendon, ligament, skin, and plant cell wall, simultaneously achieve high water content and high load-bearing capacity. The high water content enables the transport of nutrients and wastes, and the high load-bearing capacity provides structural support for the organisms. These functions are achieved through nanostructures. This biological fact has inspired synthetic mimics, but simultaneously achieving both functions has been challenging. The main difficulty is to construct nanostructures of high load-bearing capacity, characterized by multiple properties, including elastic modulus, strength, toughness, and fatigue threshold. Here we develop a process that self-assembles a nanocomposite using a hydrogel-forming polymer and a glass-forming polymer. The process separates the polymers into a hydrogel phase and a glass phase. The two phases arrest at the nanoscale and are bicontinuous. Submerged in water, the nanocomposite maintains the structure and resists further swelling. We demonstrate the process using commercial polymers, achieving high water content, as well as load-bearing capacity comparable to that of polyethylene. During the process, a rubbery stage exists, enabling us to fabricate objects of complex shapes and fine features. We conduct further experiments to discuss likely molecular origins of arrested phase separation, swell resistance, and ductility. Potential applications of the nanocomposites include artificial tissues, high-pressure filters, low-friction coatings, and solid electrolytes.

     
    more » « less
  5. Abstract. Accurate glacial isostatic adjustment (GIA) modelling in the cryosphere is required for interpreting satellite, geophysical and geological recordsand for assessing the feedbacks of Earth deformation and sea-level change on marine ice-sheet grounding lines. GIA modelling in areas of active ice lossin West Antarctica is particularly challenging because the ice is underlain by laterally varying mantle viscosities that are up to several orders ofmagnitude lower than the global average, leading to a faster and more localised response of the solid Earth to ongoing and future ice-sheet retreatand necessitating GIA models that incorporate 3-D viscoelastic Earth structure. Improvements to GIA models allow for computation of the viscoelasticresponse of the Earth to surface ice loading at sub-kilometre resolution, and ice-sheet models and observational products now provide the inputs toGIA models at comparably unprecedented detail. However, the resolution required to accurately capture GIA in models remains poorly understood, andhigh-resolution calculations come at heavy computational expense. We adopt a 3-D GIA model with a range of Earth structure models based on recentseismic tomography and geodetic data to perform a comprehensive analysis of the influence of grid resolution on predictions of GIA in the AmundsenSea Embayment (ASE) in West Antarctica. Through idealised sensitivity testing down to sub-kilometre resolution with spatially isolated ice loadingchanges, we find that a grid resolution of ∼ 13 of the radius of the load or higher is required to accurately capture the elasticresponse of the Earth. However, when we consider more realistic, spatially coherent ice loss scenarios based on modern observational records andfuture ice-sheet model projections and adopt a viscoelastic Earth, we find that predicted deformation and sea-level change along the grounding lineconverge to within 5 % with grid resolutions of 7.5 km or higher, and to within 2 % for grid resolutions of 3.75 km andhigher, even when the input ice model is on a 1 km grid. Furthermore, we show that low mantle viscosities beneath the ASE lead to viscousdeformation that contributes to the instrumental record on decadal timescales and equals or dominates over elastic effects by the end of the 21stcentury. Our findings suggest that for the range of resolutions of 1.9–15 km that we considered, the error due to adopting a coarser gridin this region is negligible compared to the effect of neglecting viscous effects and the uncertainty in the adopted mantle viscosity structure. 
    more » « less