skip to main content

Title: Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica
Abstract. Accurate glacial isostatic adjustment (GIA) modelling in the cryosphere is required for interpreting satellite, geophysical and geological recordsand for assessing the feedbacks of Earth deformation and sea-level change on marine ice-sheet grounding lines. GIA modelling in areas of active ice lossin West Antarctica is particularly challenging because the ice is underlain by laterally varying mantle viscosities that are up to several orders ofmagnitude lower than the global average, leading to a faster and more localised response of the solid Earth to ongoing and future ice-sheet retreatand necessitating GIA models that incorporate 3-D viscoelastic Earth structure. Improvements to GIA models allow for computation of the viscoelasticresponse of the Earth to surface ice loading at sub-kilometre resolution, and ice-sheet models and observational products now provide the inputs toGIA models at comparably unprecedented detail. However, the resolution required to accurately capture GIA in models remains poorly understood, andhigh-resolution calculations come at heavy computational expense. We adopt a 3-D GIA model with a range of Earth structure models based on recentseismic tomography and geodetic data to perform a comprehensive analysis of the influence of grid resolution on predictions of GIA in the AmundsenSea Embayment (ASE) in West Antarctica. Through idealised sensitivity testing down more » to sub-kilometre resolution with spatially isolated ice loadingchanges, we find that a grid resolution of ∼ 13 of the radius of the load or higher is required to accurately capture the elasticresponse of the Earth. However, when we consider more realistic, spatially coherent ice loss scenarios based on modern observational records andfuture ice-sheet model projections and adopt a viscoelastic Earth, we find that predicted deformation and sea-level change along the grounding lineconverge to within 5 % with grid resolutions of 7.5 km or higher, and to within 2 % for grid resolutions of 3.75 km andhigher, even when the input ice model is on a 1 km grid. Furthermore, we show that low mantle viscosities beneath the ASE lead to viscousdeformation that contributes to the instrumental record on decadal timescales and equals or dominates over elastic effects by the end of the 21stcentury. Our findings suggest that for the range of resolutions of 1.9–15 km that we considered, the error due to adopting a coarser gridin this region is negligible compared to the effect of neglecting viscous effects and the uncertainty in the adopted mantle viscosity structure. « less
Authors:
; ; ;
Award ID(s):
1745074
Publication Date:
NSF-PAR ID:
10350647
Journal Name:
The Cryosphere
Volume:
16
Issue:
6
Page Range or eLocation-ID:
2203 to 2223
ISSN:
1994-0424
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Earth structure beneath the Antarctic exerts an important control on the evolution of the ice sheet. A range of geological and geophysical data sets indicate that this structure is complex, with the western sector characterized by a lithosphere of thickness ∼50–100 km and viscosities within the upper mantle that vary by 2–3 orders of magnitude. Recent analyses of uplift rates estimated using Global Navigation Satellite System (GNSS) observations have inferred 1-D viscosity profiles below West Antarctica discretized into a small set of layers within the upper mantle using forward modelling of glacial isostatic adjustment (GIA). It remains unclear, however, what these 1-D viscosity models represent in an area with complex 3-D mantle structure, and over what geographic length-scale they are applicable. Here, we explore this issue by repeating the same modelling procedure but applied to synthetic uplift rates computed using a realistic model of 3-D viscoelastic Earth structure inferred from seismic tomographic imaging of the region, a finite volume treatment of GIA that captures this complexity, and a loading history of Antarctic ice mass changes inferred over the period 1992–2017. We find differences of up to an order of magnitude between the best-fitting 1-D inferences and regionally averaged depth profilesmore »through the 3-D viscosity field used to generate the synthetics. Additional calculations suggest that this level of disagreement is not systematically improved if one increases the number of observation sites adopted in the analysis. Moreover, the 1-D models inferred from such a procedure are non-unique, that is a broad range of viscosity profiles fit the synthetic uplift rates equally well as a consequence, in part, of correlations between the viscosity values within each layer. While the uplift rate at each GNSS site is sensitive to a unique subspace of the complex, 3-D viscosity field, additional analyses based on rates from subsets of proximal sites showed no consistent improvement in the level of bias in the 1-D inference. We also conclude that the broad, regional-scale uplift field generated with the 3-D model is poorly represented by a prediction based on the best-fitting 1-D Earth model. Future work analysing GNSS data should be extended to include horizontal rates and move towards inversions for 3-D structure that reflect the intrinsic 3-D resolving power of the data.

    « less
  2. Abstract. Retreat and advance of ice sheets perturb the gravitational field, solidsurface and rotation of the Earth, leading to spatially variable sea-levelchanges over a range of timescales O(100−6 years), which in turn feedback onto ice-sheet dynamics. Coupled ice-sheet–sea-level models havebeen developed to capture the interactive processes between ice sheets, sealevel and the solid Earth, but it is computationally challenging to captureshort-term interactions O(100−2 years) precisely within longer O(103−6 years) simulations. The standard forward sea-level modelling algorithmassigns a uniform temporal resolution in the sea-level model, causing aquadratic increase in total CPU time with the total number of input icehistory steps, which increases with either the length or temporal resolutionof the simulation. In this study, we introduce a new “time window”algorithm for 1D pseudo-spectral sea-level models based on the normal modemethod that enables users to define the temporal resolution at which the iceloading history is captured during different time intervals before thecurrent simulation time. Utilizing the time window, we assign a finetemporal resolution O(100−2 years) for the period of ongoing andrecent history of surface ice and ocean loading changes and a coarsertemporal resolution O(103−6 years) for earlier periods in thesimulation. This reduces the total CPU time and memory required per modeltime stepmore »while maintaining the precision of the model results. We explorethe sensitivity of sea-level model results to the model temporal resolutionand show how this sensitivity feeds back onto ice-sheet dynamics in coupledmodelling. We apply the new algorithm to simulate sea-level changes inresponse to global ice-sheet evolution over two glacial cycles and the rapidcollapse of marine sectors of the West Antarctic Ice Sheet in the comingcenturies and provide appropriate time window profiles for each application.The time window algorithm reduces the total CPU time by ∼ 50 % in each of these examples and changes the trend of the total CPU timeincrease from quadratic to linear. This improvement would increase withlonger simulations than those considered here. Our algorithm also allows for couplingtime intervals of annual temporal scale for coupled ice-sheet–sea-levelmodelling of regions such as West Antarctica that are characterized byrapid solid Earth response to ice changes due to the thin lithosphere andlow mantle viscosities.« less
  3. Abstract The West Antarctic Ice Sheet (WAIS) overlies a thin, variable-thickness lithosphere and a shallow upper-mantle region of laterally varying and, in some regions, very low (~1018 Pa s) viscosity. We explore the extent to which viscous effects may affect predictions of present-day geoid and crustal deformation rates resulting from Antarctic ice mass flux over the last quarter century and project these calculations into the next half century, using viscoelastic Earth models of varying complexity. Peak deformation rates at the end of a 25-yr simulation predicted with an elastic model underestimate analogous predictions that are based on a 3D viscoelastic Earth model (with minimum viscosity below West Antarctica of 1018 Pa s) by ~15 and ~3 mm yr−1 in the vertical and horizontal directions, respectively, at sites overlying low-viscosity mantle and close to high rates of ice mass flux. The discrepancy in uplift rate can be reduced by adopting 1D Earth models tuned to the regional average viscosity profile beneath West Antarctica. In the case of horizontal crustal rates, adopting 1D regional viscosity models is no more accurate in recovering predictions that are based on 3D viscosity models than calculations that assume a purely elastic Earth. The magnitude and relativemore »contribution of viscous relaxation to crustal deformation rates will likely increase significantly in the next several decades, and the adoption of 3D viscoelastic Earth models in analyses of geodetic datasets [e.g., Global Navigation Satellite System (GNSS); Gravity Recovery and Climate Experiment (GRACE)] will be required to accurately estimate the magnitude of Antarctic modern ice mass flux in the progressively warming world.« less
  4. Much of the knowledge of Antarctic Ice Sheet variations since its inception ~34 Ma derives from marine sediments on the continental shelf, deposited in glacimarine or sub-ice environments by advancing and retreating grounded ice, and observed today by seismic profiling and coring. If coupled ice-sheet and sediment models can simulate these deposits explicitly, direct comparisons with the sediment record would be valuable in linking it to Cenozoic ice and climate history. Here we apply an existing 3-D ice sheet and sediment model to the whole period of late Cenozoic Antarctic evolution. The ice-sheet model uses local parameterizations of grounding-line flux, ice-shelf hydrofracture and ice cliff failure. The sediment model includes quarrying of bedrock, sub-ice transport, and marine deposition. Atmospheric and oceanic forcing is determined by uniform shifts to modern climatology in proportion to records of atmospheric CO2, deep-sea-core d18O, and orbital insolation variations. Initial ice-free and sediment-free bedrock topography is prescribed from the 34 Ma reconstruction of Wilson et al., Palaeo3, 2011, and their estimated rate of tectonic subsidence is applied in West Antarctica. The model is run continuously from 34 Ma to the present, to capture the entire post-Eocene Antarctic landscape evolution and off-shore sediment packages in a singlemore »self-consistent simulation. In order to make these long simulations feasible, the model resolution is very coarse, 80 km. However the ice model's use of local parameterizations for fine-scale dynamical processes yields results that are not seriously degraded compared to finer resolutions in short tests. The primary goals are (1) to reproduce major recognized ice-sheet trends and fluctuations from the Eocene to today, and (2) to produce a 3-D model map of modern sediment deposits. "Strata" are tracked by recording times of deposition within the model sediment stacks. Unconformities in these strata occur in the model that can be compared with observed profiles. Initial results are presented, and preliminary overall comparisons are made with observed sediment packages, focusing on sensitivities to climate forcing, quarrying rates, and sediment parameters that stand in for alternate sediment rheologies.« less
  5. With the ongoing discussion of Earth structure under West Antarctica and how it relates to the extension and volcanism of the area, we explore the possibility of a hydrated or thermally perturbed mantle underneath the region. Using P-wave receiver functions, we focus on the Mantle Transition Zone (MTZ) and how its thickness fluctuates from the global average (240-260 km). Prior studies have explored the West Antarctic regions of Marie Byrd Land and the West Antarctic Rift, but we expand this to include ~3-5 years of recent, additional seismic data from the Amundsen Sea and Pine Island Bay regions. Several years of additional data from the Ronne-Fichtner Ice Shelf, Ellsworth Land, and Marie Byrd Land regions will help provide a more complete picture of the mantle transition zone. Data for this study was obtained from IRIS for earthquakes of a 5.5 magnitude or greater. We use an iterative, time domain deconvolution method, filtered with Gaussian widths of 0.5, 0.75, and 1.0. All events within their respective Gaussian filter have undergone quality check by removing waveforms that have lower than 85% fit and visually checking for clear outliers. We migrate the receiver functions to depth and stack, using both single station stackingmore »and common conversion point (CCP) stacking. We migrate the CCP stacks assuming both 1D (AK-135) and 3D velocity models throughout the region. Preliminary results from single-station stacks beneath the Thurston Island and Amundsen Sea regions suggest that the MTZ thickness is similar to the global average and the depth to the transition zone appears to be depressed, with average transition zone boundaries appearing around 430 and 680 km. If the MTZ is thinner than the global average, it may be an indication for high temperature thermal anomalies or a plume under West Antarctica that may help explain the history of extension and uplift there. These results could be useful for glacial isostatic adjustment and/or geothermal heat flux models that attempt to understand ice sheet history and stability.« less