Earth structure beneath the Antarctic exerts an important control on the evolution of the ice sheet. A range of geological and geophysical data sets indicate that this structure is complex, with the western sector characterized by a lithosphere of thickness ∼50–100 km and viscosities within the upper mantle that vary by 2–3 orders of magnitude. Recent analyses of uplift rates estimated using Global Navigation Satellite System (GNSS) observations have inferred 1-D viscosity profiles below West Antarctica discretized into a small set of layers within the upper mantle using forward modelling of glacial isostatic adjustment (GIA). It remains unclear, however, what these 1-D viscosity models represent in an area with complex 3-D mantle structure, and over what geographic length-scale they are applicable. Here, we explore this issue by repeating the same modelling procedure but applied to synthetic uplift rates computed using a realistic model of 3-D viscoelastic Earth structure inferred from seismic tomographic imaging of the region, a finite volume treatment of GIA that captures this complexity, and a loading history of Antarctic ice mass changes inferred over the period 1992–2017. We find differences of up to an order of magnitude between the best-fitting 1-D inferences and regionally averaged depth profilesmore »
Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica
Abstract. Accurate glacial isostatic adjustment (GIA) modelling in the cryosphere is required for interpreting satellite, geophysical and geological recordsand for assessing the feedbacks of Earth deformation and sea-level change on marine ice-sheet grounding lines. GIA modelling in areas of active ice lossin West Antarctica is particularly challenging because the ice is underlain by laterally varying mantle viscosities that are up to several orders ofmagnitude lower than the global average, leading to a faster and more localised response of the solid Earth to ongoing and future ice-sheet retreatand necessitating GIA models that incorporate 3-D viscoelastic Earth structure. Improvements to GIA models allow for computation of the viscoelasticresponse of the Earth to surface ice loading at sub-kilometre resolution, and ice-sheet models and observational products now provide the inputs toGIA models at comparably unprecedented detail. However, the resolution required to accurately capture GIA in models remains poorly understood, andhigh-resolution calculations come at heavy computational expense. We adopt a 3-D GIA model with a range of Earth structure models based on recentseismic tomography and geodetic data to perform a comprehensive analysis of the influence of grid resolution on predictions of GIA in the AmundsenSea Embayment (ASE) in West Antarctica. Through idealised sensitivity testing down more »
- Award ID(s):
- 1745074
- Publication Date:
- NSF-PAR ID:
- 10350647
- Journal Name:
- The Cryosphere
- Volume:
- 16
- Issue:
- 6
- Page Range or eLocation-ID:
- 2203 to 2223
- ISSN:
- 1994-0424
- Sponsoring Org:
- National Science Foundation
More Like this
-
SUMMARY -
Abstract. Retreat and advance of ice sheets perturb the gravitational field, solidsurface and rotation of the Earth, leading to spatially variable sea-levelchanges over a range of timescales O(100−6 years), which in turn feedback onto ice-sheet dynamics. Coupled ice-sheet–sea-level models havebeen developed to capture the interactive processes between ice sheets, sealevel and the solid Earth, but it is computationally challenging to captureshort-term interactions O(100−2 years) precisely within longer O(103−6 years) simulations. The standard forward sea-level modelling algorithmassigns a uniform temporal resolution in the sea-level model, causing aquadratic increase in total CPU time with the total number of input icehistory steps, which increases with either the length or temporal resolutionof the simulation. In this study, we introduce a new “time window”algorithm for 1D pseudo-spectral sea-level models based on the normal modemethod that enables users to define the temporal resolution at which the iceloading history is captured during different time intervals before thecurrent simulation time. Utilizing the time window, we assign a finetemporal resolution O(100−2 years) for the period of ongoing andrecent history of surface ice and ocean loading changes and a coarsertemporal resolution O(103−6 years) for earlier periods in thesimulation. This reduces the total CPU time and memory required per modeltime stepmore »
-
Abstract The West Antarctic Ice Sheet (WAIS) overlies a thin, variable-thickness lithosphere and a shallow upper-mantle region of laterally varying and, in some regions, very low (~1018 Pa s) viscosity. We explore the extent to which viscous effects may affect predictions of present-day geoid and crustal deformation rates resulting from Antarctic ice mass flux over the last quarter century and project these calculations into the next half century, using viscoelastic Earth models of varying complexity. Peak deformation rates at the end of a 25-yr simulation predicted with an elastic model underestimate analogous predictions that are based on a 3D viscoelastic Earth model (with minimum viscosity below West Antarctica of 1018 Pa s) by ~15 and ~3 mm yr−1 in the vertical and horizontal directions, respectively, at sites overlying low-viscosity mantle and close to high rates of ice mass flux. The discrepancy in uplift rate can be reduced by adopting 1D Earth models tuned to the regional average viscosity profile beneath West Antarctica. In the case of horizontal crustal rates, adopting 1D regional viscosity models is no more accurate in recovering predictions that are based on 3D viscosity models than calculations that assume a purely elastic Earth. The magnitude and relativemore »
-
Much of the knowledge of Antarctic Ice Sheet variations since its inception ~34 Ma derives from marine sediments on the continental shelf, deposited in glacimarine or sub-ice environments by advancing and retreating grounded ice, and observed today by seismic profiling and coring. If coupled ice-sheet and sediment models can simulate these deposits explicitly, direct comparisons with the sediment record would be valuable in linking it to Cenozoic ice and climate history. Here we apply an existing 3-D ice sheet and sediment model to the whole period of late Cenozoic Antarctic evolution. The ice-sheet model uses local parameterizations of grounding-line flux, ice-shelf hydrofracture and ice cliff failure. The sediment model includes quarrying of bedrock, sub-ice transport, and marine deposition. Atmospheric and oceanic forcing is determined by uniform shifts to modern climatology in proportion to records of atmospheric CO2, deep-sea-core d18O, and orbital insolation variations. Initial ice-free and sediment-free bedrock topography is prescribed from the 34 Ma reconstruction of Wilson et al., Palaeo3, 2011, and their estimated rate of tectonic subsidence is applied in West Antarctica. The model is run continuously from 34 Ma to the present, to capture the entire post-Eocene Antarctic landscape evolution and off-shore sediment packages in a singlemore »
-
With the ongoing discussion of Earth structure under West Antarctica and how it relates to the extension and volcanism of the area, we explore the possibility of a hydrated or thermally perturbed mantle underneath the region. Using P-wave receiver functions, we focus on the Mantle Transition Zone (MTZ) and how its thickness fluctuates from the global average (240-260 km). Prior studies have explored the West Antarctic regions of Marie Byrd Land and the West Antarctic Rift, but we expand this to include ~3-5 years of recent, additional seismic data from the Amundsen Sea and Pine Island Bay regions. Several years of additional data from the Ronne-Fichtner Ice Shelf, Ellsworth Land, and Marie Byrd Land regions will help provide a more complete picture of the mantle transition zone. Data for this study was obtained from IRIS for earthquakes of a 5.5 magnitude or greater. We use an iterative, time domain deconvolution method, filtered with Gaussian widths of 0.5, 0.75, and 1.0. All events within their respective Gaussian filter have undergone quality check by removing waveforms that have lower than 85% fit and visually checking for clear outliers. We migrate the receiver functions to depth and stack, using both single station stackingmore »