skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stabilising role of seed banks and the maintenance of bacterial diversity
Abstract Coexisting species often exhibit negative frequency dependence due to mechanisms that promote population growth and persistence when rare. These stabilising mechanisms can maintain diversity through interspecific niche differences, but also through life‐history strategies like dormancy that buffer populations in fluctuating environments. However, there are few tests demonstrating how seed banks contribute to long‐term community dynamics and the maintenance of diversity. Using a multi‐year, high‐frequency time series of bacterial community data from a north temperate lake, we documented patterns consistent with stabilising coexistence. Bacterial taxa exhibited differential responses to seasonal environmental conditions, while seed bank dynamics helped maintain diversity over less‐favourable winter periods. Strong negative frequency dependence in rare, but metabolically active, taxa suggested a role for biotic interactions in promoting coexistence. Together, our results provide field‐based evidence that niche differences and seed banks contribute to recurring community dynamics and the long‐term maintenance of diversity in nature.  more » « less
Award ID(s):
1934554
PAR ID:
10374414
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
24
Issue:
11
ISSN:
1461-023X
Page Range / eLocation ID:
p. 2328-2338
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Niche differentiation with respect to light availability as it varies across succession has often been thought to explain tree species coexistence. Demographic light‐related niches represented by growth‐survival and stature‐recruitment trade‐offs and captured by demographic groups (slow, fast, long‐lived pioneers, short‐lived breeders and intermediate) have been shown to accurately represent the biomass dynamics of secondary and old‐growth forests in central Panama in a model. However, whether the simple mechanisms of that well‐parameterized and accurate model are enough to support the long‐term coexistence of demographic groups across these trade‐offs has yet to be tested.Here, we develop a model to test whether stochastic, small‐scale gap disturbances and subsequent competition for light can support the long‐term coexistence of the observed demographic groups in the Barro Colorado Island forest dynamics plot. Specifically, to test whether the demographic differences among species promote coexistence, we compare niche simulation models, parameterized by the different demographic groups, to a variety of neutral models, where the species have the same demographic parameters.Upon exploring the estimated range of possible parameterizations of recruitment (a difficult‐to‐measure parameter), we identify several parameterizations where differences among groups along the growth‐survival and stature‐recruitment trade‐off axes facilitate long‐term coexistence. We find that gap disturbances are essential for these results, indicating that it is the differences in the subsequent competition for light through time that provide the opportunity for stabilizing niche differentiation. Additionally, the parameterizations that generate stable coexistence display successional negative density dependence and realistic within‐patch post‐disturbance forest dynamics.Synthesis. This model‐data integration exercise indicates that small‐scale disturbances and subsequent competition for light may be significant forces for stable diversity maintenance of demographic groups along the growth–survival and stature–recruitment trade‐off axes in a neotropical forest. This result, however, holds only for a subset of the empirically reasonable recruitment parameters, indicating the importance of improving the understanding of recruitment and its demographic trade‐offs for understanding demographic strategy coexistence. 
    more » « less
  2. Abstract From genes to communities, understanding how diversity is maintained remains a fundamental question in biology. One challenging to identify, yet potentially ubiquitous, mechanism for the maintenance of diversity is negative frequency dependent selection (NFDS), which occurs when entities (e.g., genotypes, life history strategies, species) experience a per capita reduction in fitness with increases in relative abundance. Because NFDS allows rare entities to increase in frequency while preventing abundant entities from excluding others, we posit that negative frequency dependent selection plays a central role in the maintenance of diversity. In this review, we relate NFDS to coexistence, identify mechanisms of NFDS (e.g., mutualism, predation, parasitism), review strategies for identifying NFDS, and distinguish NFDS from other mechanisms of coexistence (e.g., storage effects, fluctuating selection). We also emphasize that NFDS is a key place where ecology and evolution intersect. Specifically, there are many examples of frequency dependent processes in ecology, but fewer cases that link this process to selection. Similarly, there are many examples of selection in evolution, but fewer cases that link changes in trait values to negative frequency dependence. Bridging these two well‐developed fields of ecology and evolution will allow for mechanistic insights into the maintenance of diversity at multiple levels. 
    more » « less
  3. Abstract Dispersal and dormancy are two common strategies allowing for species persistence and the maintenance of biodiversity in variable environments. However, theory and empirical tests of spatial diversity patterns tend to examine either mechanism in isolation. Here, we developed a stochastic, spatially explicit metacommunity model incorporating seed banks with varying germination and survival rates. We found that dormancy and dispersal had interactive, nonlinear effects on the maintenance and distribution of metacommunity diversity. Seed banks promoted local diversity when seed survival was high and maintained regional diversity through interactions with dispersal. The benefits of seed banks for regional diversity were largest when dispersal was high or intermediate, depending on whether local competition was equal or stabilising. Our study shows that classic predictions for how dispersal affects metacommunity diversity can be strongly influenced by dormancy. Together, these results emphasise the need to consider both temporal and spatial processes when predicting multi‐scale patterns of diversity. 
    more » « less
  4. Identifying the mechanisms underlying the persistence of rare species has long been a motivating question for ecologists. Classical theory implies that community dynamics should be driven by common species, and that natural selection should not allow small populations of rare species to persist. Yet, a majority of the species found on Earth are rare. Consequently, several mechanisms have been proposed to explain their persistence, including negative density dependence, demographic compensation, vital rate buffering, asynchronous responses of subpopulations to environmental heterogeneity, and fine‐scale source‐sink dynamics. Persistence of seeds in a seed bank, which is often ignored in models of population dynamics, can also buffer small populations against collapse. We used integral projection models (IPMs) to examine the population dynamics ofOenothera coloradensis, a rare, monocarpic perennial forb, and determine whether any of five proposed demographic mechanisms for rare species persistence contribute to the long‐term viability of two populations. We also evaluate how including a discrete seed bank stage changes these population models. Including a seed bank stage in population models had a significantly increased modeledO. coloradensispopulation growth rate. Using this structured population model, we found that negative density‐dependence was the only supported mechanism for the persistence of this rare species. We propose that high micro‐site abundances within a spatially heterogeneous environment enables this species to persist, allowing it to sidestep the demographic and genetic challenges of small population size that rare species typically face. The five mechanisms of persistence explored in our study have been demonstrated as effective strategies in other species, and the fact that only one of them had strong support here supports the idea that globally rare species can employ distinct persistence strategies. This reinforces the need for customized management and conservation strategies that mirror the diversity of mechanisms that allow rare species persistence. 
    more » « less
  5. Abstract Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long‐term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole‐community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind‐dispersed species exhibited significant synchrony at ~6‐month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale‐specificity and time‐localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology. 
    more » « less