skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Middle Atmosphere Temperature Trends in the Twentieth and Twenty‐First Centuries Simulated With the Whole Atmosphere Community Climate Model (WACCM)

We use Whole Atmosphere Community Climate Model simulations made under various climate change scenarios to study the evolution of the global‐mean temperature trend in the late twentieth century and the twenty‐first century. Results are compared with available satellite observations, including new trend estimates derived from the Sounding of the Atmosphere using Broadband Emission Radiometry instrument on NASA's TIMED spacecraft. Modeled and observed trends are shown to be consistent throughout the entire middle atmosphere, from near the tropopause (~16 km) to the lower thermosphere (~95 km) in the period covered by the satellite data. Simulations are extended into the twenty‐first century to document the evolution of the global‐mean temperature trend profile. We find, consistent with previous studies, a marked change in the trend profile at the turn of the twenty‐first century, which is driven by the recovery of stratospheric ozone following the adoption of the Montreal Protocol. In the twenty‐first century, the trend profile becomes more uniform with altitude, but its overall shape and magnitude are conditioned by the scenario adopted for future emissions of greenhouse gases. Our results suggest that the vertical profile of temperature trends in the middle atmosphere will remain an important signature of global climate change, and they underscore the importance of global, continuous monitoring of this region of the atmosphere.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X Size: p. 7984-7993
["p. 7984-7993"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future Arctic sea ice loss has a known impact on Arctic amplification (AA) and mean atmospheric circulation. Furthermore, several studies have shown it leads to a decreased variance in temperature over North America. In this study, we analyze results from two fully coupled Community Earth System Model (CESM) Whole Atmosphere Community Climate Model (WACCM4) simulations with sea ice nudged to either the ensemble mean of WACCM historical runs averaged over the 1980–99 period for the control (CTL) or projected RCP8.5 values over the 2080–99 period for the experiment (EXP). Dominant large-scale meteorological patterns (LSMPs) are then identified using self-organizing maps applied to winter daily 500-hPa geopotential height anomalies () over North America. We investigate how sea ice loss (EXP − CTL) impacts the frequency of these LSMPs and, through composite analysis, the sensible weather associated with them. We find differences in LSMP frequency but no change in residency time, indicating there is no stagnation of the flow with sea ice loss. Sea ice loss also acts to de-amplify and/or shift thethat characterize these LSMPs and their associated anomalies in potential temperature at 850 hPa. Impacts on precipitation anomalies are more localized and consistent with changes in anomalous sea level pressure. With this LSMP framework we provide new mechanistic insights, demonstrating a role for thermodynamic, dynamic, and diabatic processes in sea ice impacts on atmospheric variability. Understanding these processes from a synoptic perspective is critical as some LSMPs play an outsized role in producing the mean response to Arctic sea ice loss.

    Significance Statement

    The goal of this study is to understand how future Arctic sea ice loss might impact daily weather patterns over North America. We use a global climate model to produce one set of simulations where sea ice is similar to present conditions and another that represents conditions at the end of the twenty-first century. Daily patterns in large-scale circulation at roughly 5.5 km in altitude are then identified using a machine learning method. We find that sea ice loss tends to de-amplify these patterns and their associated impacts on temperature nearer the surface. Our methodology allows us to probe more deeply into the mechanisms responsible for these changes, which provides a new way to understand how sea ice loss can impact the daily weather we experience.

    more » « less
  2. Abstract

    In the tropics, the absorbed solar radiation is larger than the outgoing longwave radiation, while the opposite is true at high latitudes. This basic fact implies a poleward energy transport (PET) in both hemispheres, which is accomplished by the atmosphere and oceans. The magnitude of PET is determined by the top of atmosphere gradient in the net radiation flux, and small changes to this quantity must change the total PET in the absence of changes in heat uptake. We analyze a large ensemble of 50 historic climate simulations from the CESM LENS2 project and find a significant PET anomaly in the latter half of the twentieth century. The temporal evolution of this anomaly—with a rapid increase after 1950, a peak near 1975, and a rapid decrease in the 1990s—mirrors the historic trend of sulfur dioxide (SO2, a significant aerosol predecessor) emissions from Europe and North America. This anomaly also appears in an analysis of the PET calculated from ERA5 reanalyses and from the CESM2 Single Forcing Large Ensemble. Consistent with previous studies, we find that historic SO2emissions from Europe and North America brightened clouds, which reflected additional solar radiation back to space in the midlatitudes: this shortwave anomaly increased the meridional gradient in the net TOA radiation flux and induced an anomalous northward energy transport. Finally, our results suggest that cryosphere processes become an additional important factor in setting the PET anomaly during the first years of the twenty-first century by contributing to the difference in absorbed solar radiation between hemispheres alongside cloud radiative effects.

    significance statement

    In this study, we analyze a large group of climate model simulations from 1850 to 2014 and find that this historical pollution changed the way that heat was transported from the tropics to Earth’s poles. We also find this change in heat transport when we analyzed an atmospheric reanalysis, which is a historical dataset that combines many meteorological observations into a best estimate of the past climate state. This extra reflection of sunlight from polluted clouds cooled the Northern Hemisphere, and we hypothesize that this cooling caused more heat transport out of the tropics. Last, we find that similar pollution emitted from China and India in more recent decades has not led to a change in Earth’s heat transport because of counteracting changes in snow and ice in the Northern Hemisphere.

    more » « less
  3. Abstract

    In recent decades, significant efforts have been made to characterize and understand the global pattern of ionospheric long‐term trend. However, little attention has been paid to the topside ionosphere trend. In this study, the unique in situ data measured by series Defense Meteorological Satellite Program (DMSP) satellites were utilized to derive the long‐term trend of the topside ionosphere for the first time. We checked carefully data quality, gap, and consistency between different satellites for both electron density and ion temperature, and compared the techniques of artificial neuron network (ANN) and multiple linear regression methods for deriving the trend. The electron density (Ne) trend in the middle and low latitudes at ~860 km around 18 MLT was derived using the ANN method from 1995–2017. The trend from DMSP observations has a mean magnitude ranging from~ − 2%to~2%per decade, with clear seasonal, latitude and longitude variations. The derived trend was evaluated by directly comparing with the simulated trend at 500 km from the NCAR‐TIEGCM driven by realistic changes ofCO2level and geomagnetic field. The observed and simulated trends have similar geographic distribution patterns at 18 MLT. The good agreement between the observed trend around 860 km and the simulated trend near 500 km implies that the physical processes controlling theNetrends above the peak height might be identical. Further control simulations show that the geomagnetic field secular variation is the dominant factor of the electron density trend at around 500 km, rather than theCO2long‐term enhancement.

    more » « less
  4. Abstract This paper describes the downscaling of an ensemble of 12 general circulation models (GCMs) using the Weather Research and Forecasting (WRF) Model at 12-km grid spacing over the period 1970–2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. The 1 April snowpack declines are large over the lower-to-middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCMs producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the twenty-first century. Significance Statement This paper provides a unique high-resolution view of projected climate change over the Pacific Northwest and does so using an ensemble of regional climate models, affording a look at the uncertainties in local impacts of global warming. The paper examines regional meteorological processes influenced by global warming and provides guidance for adaptation and preparation. 
    more » « less
  5. Abstract

    Many mountain regions around the world are exposed to enhanced warming when compared to their surroundings, threatening key environmental services provided by mountains. Here we investigate this effect, known as elevation-dependent warming (EDW), in the Andes of Ecuador, using observations and simulations with the Weather Research and Forecasting (WRF) Model. EDW is discernible in observations of mean and maximum temperature in the Andes of Ecuador, but large uncertainties remain due to considerable data gaps in both space and time. WRF simulations of present-day (1986–2005) and future climate (RCP4.5 and RCP8.5 for 2041–60) reveal a very distinct EDW signal, with different rates of warming on the eastern and western slopes. This EDW effect is the combined result of multiple feedback mechanisms that operate on different spatial scales. Enhanced upper-tropospheric warming projects onto surface temperature on both sides of the Andes. In addition, changes in the zonal mean midtropospheric circulation lead to enhanced subsidence and warming over the western slopes at high elevation. The increased subsidence also induces drying, reduces cloudiness, and results in enhanced net surface radiation receipts, further contributing to stronger warming. Finally, the highest elevations are also affected by the snow-albedo feedback, due to significant reductions in snow cover by the middle of the twenty-first century. While these feedbacks are more pronounced in the high-emission scenario RCP8.5, our results indicate that high elevations in Ecuador will continue to warm at enhanced rates in the twenty-first century, regardless of emission scenario.

    Significance Statement

    Mountains are often projected to experience stronger warming than their surrounding lowlands going forward, a phenomenon known as elevation-dependent warming (EDW), which can threaten high-altitude ecosystems and lead to accelerated glacier retreat. We investigate the mechanisms associated with EDW in the Andes of Ecuador using both observations and model simulations for the present and the future. A combination of factors amplify warming at mountain tops, including a stronger warming high in the atmosphere, reduced cloudiness, and a reduction of snow and ice at high elevations. The latter two factors also favor enhanced absorption of sunlight, which promotes warming. The degree to which this warming is enhanced at high elevations in the future depends on the greenhouse gas emission pathway.

    more » « less