skip to main content


Title: Three‐Dimensional X‐line Spreading in Asymmetric Magnetic Reconnection
Abstract

Three‐dimensional X‐line spreading is important for the coupling between global dynamics and local kinetic physics of magnetic reconnection. Using large‐scale 3‐D particle‐in‐cell simulations, we investigate the spreading of the X‐line out of the reconnection plane under a strong guide field in asymmetric reconnection. The X‐line spreading speed depends strongly on the equilibrium current sheet thickness. In a simulation with a thick, ion‐scale equilibrium current sheet (CS), the X‐line spreads at the ambient species drift speeds, which are significantly lower than the Alfvén speed based on the guide field(sub‐Alfvénic spreading). In simulations with a sub‐ion‐scale CS, the X‐line spreads atinstead (Alfvénic spreading). An Alfvénic signal consistent with kinetic Alfvén waves develops and propagates, leading to CS thinning and extending, which ultimately causes reconnection onset. The continuous onset of reconnection along the propagation direction of the signal manifests as Alfvénic X‐line spreading. The strong dependence on the CS thickness of the spreading speeds and the orientation of the X‐line are consistent with the collisionless tearing instability. Our simulations indicate that when the collisionless tearing growth is sufficiently strong in a thinner CS such that, Alfvénic X‐line spreading can effectively take place. Our results compare favorably with a number of numerical simulations and recent magnetopause observations. An important implication of this work is that the magnetopause CS is typically too thick for the X‐line to spread at the Alfvén speed.

 
more » « less
NSF-PAR ID:
10374426
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Storm‐time broadband electromagnetic field variations along the interface between the dipolar field of the Earth's inner‐magnetosphere and the stretched fields of the plasma‐sheet are decomposed as a superposition of fluid‐kinetic modes. Using model eigen‐vectors operating on the full set of Van Allen Probes fields measurements it is shown how these variations are composed of a broad spectrum of dispersive Alfvén waves with significant spectral energy densities in the fast and slow modes over scales extending into the kinetic range. These modes occupy volumes in‐space that define the field variations observed at each spacecraft frame frequency (). They are in aggregate not necessarily planar and often comprise filamentary structures with no distinct propagation direction in the perpendicular plane. Within these volumes the characteristic parallel phase speeds of the fast and Alfvénic modes coincide over a broad range ofsuggestive of coupling/conversion between modes.

     
    more » « less
  2. Abstract

    We investigate waves close to the lower‐hybrid frequency in 12 magnetotail reconnection electron diffusion region (EDR) events with guide field levels of near‐zero to 30%. In about half of the events, the wave vector has a small component along the current sheet normal, consistent with known lower‐hybrid drift wave properties, but the perpendicular magnetic field fluctuations can be comparable or greater than the parallel component, a feature unique to the waves inside and adjacent to EDRs. Another new wave property is that the wave vector has a significant component along the current sheet normal in some events and completely along the normal for one event. In 1/4 of the events, theterm has a significant contribution to the wave electric field, possibly a feature of lower‐hybrid waves more likely to exist in the diffusion region than further away from the X‐line. Electron temperature variations are correlated with the wave potential, due to wave electric field acceleration and crossings at the corrugated separatrix region with different amounts of mixing between reconnection inflowing and outflowing populations. The latter also leads to the anti‐correlation between parallel and perpendicular temperature components. Using four‐spacecraft measurements, the magnetic field line twisting is demonstrated by the correlated fluctuations inand. The lower‐hybrid wave in the EDR of weak guide field reconnection may be generated near separatrices and penetrate to the mid‐plane or locally generated, and the latter possibility is beyond the prediction of previous reconnection simulations.

     
    more » « less
  3. Abstract

    We present observations during two substorms using simultaneous Time History of Events and Macroscale Interactions During Substorms satellites and all‐sky imagers to determine plasma sheet dynamics associated with substorm auroral onset beads. The multi‐satellite observations showed that the cross‐tail current decreased and the field‐aligned currents increased at the substorm auroral onset, indicating that the satellites detected an initiation of the currents being deflected to the ionosphere. For duskward‐propagating beads, the electric field was tailward, and ions were accumulated closer to the Earth than electrons. The mapped bead propagation speed was close to energetic ion drift speed. Theand electron drift speeds increased duskward and reduced the cross‐tail current at the onset. For dawnward‐propagating beads, the electric field was equatorward/earthward, and electrons were inferred to accumulate earthward of ions. The mapped bead propagation speed was comparable to the dawnwardand electron drift speeds. The duskward ion drift and tail current were reduced, and electrons became the dominant current carrier. We suggest that the plasma species that is responsible for the bead propagation changes with the electric field configuration and that the tail current reduction by the enhanceddrift at onset destabilizes the plasma sheet. Ion and electron outflows substantially increased low‐energy plasma density and may have increased the role ofdrifts. The bead wavelength was comparable to ion gyroradius and thus ion kinetic effects are important for determining the wavelength. In the dawnward‐propagating event, the mode of oscillation in the plasma sheet was suggested to be the sausage‐mode flapping oscillations.

     
    more » « less
  4. Abstract

    We examine the 11 July 2017 electron diffusion region (EDR)observed by the MagnetosphericMultiscale (MMS) mission using Poynting's theorem. The terms in Poynting's theorem are determined using a linear gradient approximation to obtain barycentric averages within the MMS tetrahedron. We find that Poynting's theorem is approximately balanced in the EDR and the balance is improved if the calculation ofis restricted to the LN plane. The work rate per unit volumeis mostly balanced by the divergence of the electromagnetic energy flux, indicating that the electromagnetic energy density remains relatively constant within the EDR during the encounter. We also use particle‐in‐cell (PIC) simulations to examine Poynting's theorem near an x line evolving in time. The central EDR in the simulation is characterized by approximate time independent balance in Poynting's theorem during reconnection growth, while the outer EDR exhibits time‐dependent fluctuations indicative of more chaotic behavior.

     
    more » « less
  5. Abstract

    We study a new geometric bootstrap percolation model,line percolation, on thed‐dimensional integer grid. In line percolation with infection parameterr, infection spreads from a subsetof initially infected lattice points as follows: if there exists an axis‐parallel lineLwithror more infected lattice points on it, then every lattice point ofonLgets infected, and we repeat this until the infection can no longer spread. The elements of the setAare usually chosen independently, with some densityp, and the main question is to determine, the density at which percolation (infection of the entire grid) becomes likely. In this paper, we determineup to a multiplicative factor ofandup to a multiplicative constant asfor every fixed. We also determine the size of the minimal percolating sets in all dimensions and for all values of the infection parameter.

     
    more » « less