skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Ion Heating in the Polar Cap Under Northwards IMF Bz
Abstract

Joule heating deposits a significant amount of energy into the high‐latitude ionosphere and is an important factor in many magnetosphere‐ionosphere‐thermosphere coupling processes. We consider the relationship between localized temperature enhancements in polar cap measured with the Resolute Bay Incoherent Scatter Radar‐North (RISR‐N) and the orientation of the interplanetary magnetic field (IMF). Based on analysis of 10 years of data, RISR‐N most commonly observes ion heating in the noon sector under northwards IMF. We interpret heating events in that sector as being primarily driven by sunwards plasma convection associated with lobe reconnection. We attempt to model two of the observed temperature enhancements with a data‐driven first principles model of ionospheric plasma transport and dynamics, but fail to fully reproduce the ion temperature enhancements. However, evaluating the ion energy equation using the locally measured ion velocities reproduces the observed ion temperature enhancements. This result indicates that current techniques for estimating global plasma convection pattern are not adequately capturing mesoscale flows in the polar cap, and this can result in underestimation of the energy deposition into the ionosphere and thermosphere.

 
more » « less
Award ID(s):
1452191
PAR ID:
10374447
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
11
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present high‐resolution Resolute Bay Incoherent Scatter Radar (RISR) measurements in the cusp region during an IMF southward turning. The simultaneous RISR‐N and RISR‐C operation provided 3‐D observations of the dayside polar region, and offered an opportunity to identify the cusp dynamics and polar cap patch formation. Associated with the IMF southward turning, the F‐region density and temperature increased in the cusp, and the increase was particularly evident in the topside ionosphere. The high‐density plasma drifted into the polar cap by an enhanced poleward convection, and became a polar cap patch. The patch plasma was initially dominated by density originating in the cusp, and then later the subauroral ionospheric plasma also contributed to the density enhancement. Weak upflows were present but their contribution within the RISR altitude range was minor. We suggest that the patch source region switches due to dynamic variations of the cusp precipitation and convection from lower latitudes. RISR also detected a flow vortex embedded in the large‐scale convection, which is likely a poleward moving auroral form (PMAF) signature. Joule heating peaked in the cusp E and lower F‐regions. The F‐region Pedersen conductivity increased more than the Hall conductivity, and the high conductivity region extended poleward associated with the patch density enhancement. A 1‐D cusp simulation reproduced the density and temperature enhancements by soft electron precipitation, indicating the importance of soft electron precipitation for the cusp dynamics and the initial part of the patch formation.

     
    more » « less
  2. Winds in the nighttime upper thermosphere are often observed to mimic the ionospheric plasma convection at polar latitudes, and whether the same is true for the daytime winds remains unclear. The dayside sector is subject to large temperature gradient set up by solar irradiance and it also contains the cusp, which is a hotspot of Poynting flux and a region with the strongest soft particle precipitation. We examine daytime winds using a Scanning Doppler Imager (SDI) located at the South Pole, and investigate their distribution under steadily positive and negative IMF Byconditions. The results show that daytime winds exhibit significant differences from the plasma convection. Under negative IMF Byconditions, winds flow in the same direction as the plasma zonally, but have a meridional component that is strongest in the auroral zone. As a result, winds are more poleward-directed than the plasma convection within the auroral zone, and more westward-directed in the polar cap. Under positive IMF Byconditions, winds can flow zonally against the plasma in certain regions. For instance, they flow westward in the polar cap despite the eastward plasma convection there, forming a large angle relative to the plasma convection. The results indicate that ion drag may not be the most dominant force for daytime winds. Although the importance of various forcing terms cannot be resolved with the utilized dataset, we speculate that the pressure gradient force in the presence of cusp heating serves as one important contributor.

     
    more » « less
  3. Abstract. During minor to moderate geomagnetic storms, caused by corotatinginteraction regions (CIRs) at the leading edge of high-speed streams (HSSs), solar windAlfvén waves modulated the magnetic reconnection at the daysidemagnetopause. The Resolute Bay Incoherent Scatter Radars (RISR-C andRISR-N), measuring plasma parameters in the cusp and polar cap, observedionospheric signatures of flux transfer events (FTEs) that resulted in theformation of polar cap patches. The patches were observed as they moved over the RISR, and the Canadian High-Arctic Ionospheric Network (CHAIN)ionosondes and GPS receivers. The coupling process modulated the ionospheric convection and the intensity of ionospheric currents, including the auroral electrojets. The horizontal equivalent ionospheric currents (EICs) are estimated from ground-based magnetometer data using an inversion technique. Pulses of ionospheric currents that are a source of Joule heating in the lower thermosphere launched atmospheric gravity waves, causing travelingionospheric disturbances (TIDs) that propagated equatorward. The TIDs wereobserved in the SuperDual Auroral Radar Network (SuperDARN) high-frequency (HF) radar groundscatter and the detrended total electron content (TEC) measured by globallydistributed Global Navigation Satellite System (GNSS) receivers. 
    more » « less
  4. Abstract

    In this paper, we present a case study of the radial interplanetary magnetic field (IMFBx)‐induced asymmetric solar wind‐magnetosphere‐ionosphere (SW‐M‐I) coupling between the northern and southern polar caps using ground‐based and satellite‐based data. Under prolonged conditions of strong earthward IMF on 5 March 2015, we find significant discrepancies between polar cap north (PCN) and polar cap south (PCS) magnetic indices with a negative bay‐like change in the PCN and a positive bay‐like change in the PCS. The difference between these indices (PCN‐PCS) reaches a minimum of −1.63 mV/m, which is approximately three times higher in absolute value than the values for most of the time on this day (within ±0.5 mV/m). The high‐latitude plasma convection also shows an asymmetric feature such that there exists an additional convection cell near the noon sector in the northern polar cap, but not in the southern polar cap. Meanwhile, negative bays in the north‐south component of ground magnetic field perturbations (less than 50 nT) observed in the nightside auroral region of the Northern Hemisphere are accompanied with the brightening and widening of the nightside auroral oval in the Southern Hemisphere, implying a weak, but clear energy transfer to the nightside ionosphere of both hemispheres. After the hemispheric asymmetries in the polar caps disappear, a substorm onset takes place. All these observations indicate that IMFBx‐induced single lobe reconnection that occurred in the Northern Hemisphere plays an important role in hemispheric asymmetry in the energy transfer from the solar wind to the polar cap through the magnetosphere.

     
    more » « less
  5. Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system.

     
    more » « less