skip to main content


Title: Inter-hemispheric asymmetries in high-latitude electrodynamic forcing and the thermosphere during the October 8–9, 2012, geomagnetic storm: An integrated data–Model investigation

Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system.

 
more » « less
Award ID(s):
1663770
NSF-PAR ID:
10480354
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
10
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, the Global Ionosphere Thermosphere Model is utilized to investigate the inter‐hemispheric asymmetry in the ionosphere‐thermosphere (I‐T) system at mid‐ and high‐latitudes (|geographic latitude| > 45°) associated with inter‐hemispheric differences in (a) the solar irradiance, (b) geomagnetic field, and (c) magnetospheric forcing under moderate geomagnetic conditions. Specifically, we have quantified the relative significance of the above three causes to the inter‐hemispheric asymmetries in the spatially weighted averaged E‐region electron density, F‐region neutral mass density, and horizontal neutral wind along with the hemispheric‐integrated Joule heating. Further, an asymmetry index defined as the percentage differences of these four quantities between the northern and southern hemispheres (|geographic latitude| > 45°) was calculated. It is found that: (a) The difference of the solar extreme ulutraviolet (EUV) irradiance plays a dominant role in causing inter‐hemispheric asymmetries in the four examined I‐T quantities. Typically, the asymmetry index for the E‐region electron density and integrated Joule heating at solstices with F10.7 = 150 sfu can reach 92.97% and 38.25%, respectively. (b) The asymmetric geomagnetic field can result in a strong daily variation of inter‐hemispheric asymmetries in the F‐region neutral wind and hemispheric‐integrated Joule heating over geographic coordinates. Their amplitude of asymmetry indices can be as large as 20.81% and 42.52%, which can be comparable to the solar EUV irradiance effect. (c) The contributions of the asymmetric magnetospheric forcing, including particle precipitation and ion convection pattern, can cause the asymmetry of integrated Joule heating as significant as 28.43% and 34.72%, respectively, which can be even stronger than other causes when the geomagnetic activity is intense.

     
    more » « less
  2. During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in e.g., the dynamics, composition, and neutral density. The more steady energy from the lower atmosphere into the IT system is in general much smaller than the energy input from the magnetosphere, especially during geomagnetic storms, and therefore details of the lower atmosphere forcing are often neglected in storm time simulations. In this study we compare the neutral density observed by Swarm-C during the moderate geomagnetic storm of 31 January to 3 February 2016 with the Thermosphere-Ionosphere-Electrodynamics-GCM (TIEGCM) finding that the model can capture the observed large scale neutral density variations better in the southern than northern hemisphere. The importance of more realistic lower atmospheric (LB) variations as specified by the Whole Atmosphere Community Climate Model eXtended (WACCM-X) with specified dynamics (SD) is demonstrated by improving especially the northern hemisphere neutral density by up to 15% compared to using climatological LB forcing. Further analysis highlights the importance of the background atmospheric condition in facilitating hemispheric different neutral density changes in response to the LB perturbations. In comparison, employing observationally based field-aligned current (FAC) versus using an empirical model to describe magnetosphere-ionosphere (MI) coupling leads to an 7–20% improved northern hemisphere neutral density. The results highlight the importance of the lower atmospheric variations and high latitude forcing in simulating the absolute large scale neutral density especially the hemispheric differences. However, focusing on the storm time variation with respect to the quiescent time, the lower atmospheric influence is reduced to 1–1.5% improvement with respect to the total observed neutral density. The results provide some guidance on the importance of more realistic upper boundary forcing and lower atmospheric variations when modeling large scale, absolute and relative neutral density variations. 
    more » « less
  3. Abstract

    Thermospheric mass density perturbations are commonly observed during geomagnetic storms and fundamental to upper atmosphere dynamics, but the sources of these perturbations are not well understood. Large neutral density perturbations during storms greatly affect the drag experienced by low Earth orbit. We investigated the thermospheric density perturbations at all latitudes observed along the CHAMP and GRACE satellite trajectories during the August 24–25, 2005 geomagnetic storm. Observations show that large neutral density enhancements occurred not only at high latitudes, but also globally. Large density perturbations were seen in the equatorial regions away from the high‐latitude, magnetospheric energy sources. We used the high‐resolution Multiscale Atmosphere Geospace Environment (MAGE) model to simulate consecutive neutral density changes observed by satellites during the storm. The MAGE simulation, which resolved mesoscale high‐latitude convection electric fields and field‐aligned currents, and included physics‐based specification of auroral precipitation, was contrasted with a standalone ionosphere‐thermosphere simulation driven by a high‐latitude electrodynamics empirical model. The comparison demonstrates that first‐principles representations of highly dynamic and localized Joule heating events in a fully coupled whole geospace model is critical to accurately capture both generation and propagation of traveling atmospheric disturbances (TADs) that produce neutral density perturbations globally. The MAGE simulation shows that larger density peaks in the equatorial region observed by CHAMP and GRACE are the result of TADs generated at high‐latitudes in both hemispheres, and intersect at low‐latitudes. This study reveals the importance of investigating thermospheric density variations at all latitudes in a fully coupled geospace model with sufficiently high resolving power.

     
    more » « less
  4. Abstract

    Techniques developed in the past few years enable the derivation of high‐resolution regional ion convection and particle precipitation patterns from the Super Dual Auroral Radar Network (SuperDARN) and Time History of Events and Macroscale Interactions during Substorms All‐Sky Imager (ASI) observations, respectively. For the first time in this study, a global ionosphere‐thermosphere model (GITM) is driven by such high‐resolution patterns to simulate the I‐T response to the multi‐scale geomagnetic forcing during a real event. Specifically, GITM simulations have been conducted for the 26 March 2014 event with different ways to specify the high‐latitude forcing, including empirical models, high‐resolution SuperDARN convection patterns, and high‐resolution ASI particle precipitation maps. Multi‐scale ion convection forcing estimated from high‐resolution SuperDARN observations is found to have a very strong meso‐scale component. Multi‐scale convection forcing increases the regional Joule heating (integrated over the high‐resolution SuperDARN observation domain) by ∼30% on average, which is mostly contributed by the meso‐scale component. Meso‐scale electron precipitation derived from ASI measurements contributes on average about 30% to the total electron energy flux, and its impact on the I‐T system is comparable to the meso‐scale convection forcing estimated from SuperDARN observations. Both meso‐scale convection and precipitation forcing are found to enhance ionospheric and thermospheric disturbances with prominent structures and magnitudes of a few tens of meters per second in the horizontal neutral winds at 270 km and a few percent in the neutral density at 400 km through comparisons between simulations driven by the original and smoothed high‐resolution forcing patterns.

     
    more » « less
  5. Abstract

    During geomagnetically active times, the enhanced ion convection and particle precipitation at high latitudes cause substantial disturbances in the ionosphere and thermosphere. Large‐scale traveling ionospheric disturbances (LSTIDs) were identified from Global Positioning System (GPS) total electron content (TEC) measurements from 06:30 to 08:30 UT on 26 March 2014 as a result of southward turning of the interplanetary magnetic field (IMF) Bzand enhanced particle precipitation during a substorm. The comparison of LSTIDs from the global ionosphere‐thermosphere model (GITM) simulations with GPS TEC measurements shows a general agreement. Further theoretical analyses with GITM were conducted to sperate the influence of ion convection and particle precipitation on the total Joule heating as well as on the resulting large‐scale traveling atmospheric disturbances (LSTADs) and LSTIDs. It was found that ion convection and particle precipitation have comparable contributions to the total Joule heating, although the changes of height‐integrated Joule heating due to these two forcing terms may display different distributions. In addition, the magnitudes of neutral density and TEC perturbations due to these two forcing terms were found to be comparable. Using the total energy flux versus time derived from all‐sky imager measurements for this event to drive GITM improves the data‐model comparison of LSTIDs. However, data‐model discrepancies still exist in the timing of LSTIDs and the magnitude of TEC perturbations, which calls for further investigation and realistic event‐specific specifications.

     
    more » « less