skip to main content


Title: Coseismic and Early Postseismic Deformation Due to the 2021 M7.4 Maduo (China) Earthquake
Abstract

The 2021 Maduo earthquake ruptured a 150 km‐long left‐lateral fault in the northeast Tibet. We used Synthetic Aperture Radar data collected by the Sentinel‐1A/B satellites within days of the earthquake to derive a finite fault model and investigate the details of slip distribution with depth. We generated coseismic interferograms and pixel offsets from different look directions corresponding to the ascending and descending satellite orbits. At the eastern end the rupture bifurcated into two sub‐parallel strands, with larger slip on the northern strand. Inversions of coseismic displacements show maximum slip to the east of the epicenter. The averaged coseismic slip has a peak at depth of 3–4 km, similar to slip distributions of a number of shallow strike‐slip earthquakes. Postseismic observations over several weeks following the Maduo earthquake reveal surface slip with amplitude up to 0.1 m that at least partially eliminated the coseismic slip deficit in the uppermost crust.

 
more » « less
Award ID(s):
1841273
NSF-PAR ID:
10374487
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We develop finite element models of the coseismic displacement field accounting for the 3D elastic structures surrounding the epicentral area of the 2019 Ridgecrest earthquake sequence containing two major events of Mw7.1 and Mw6.4. The coseismic slip distribution is inferred from the surface displacement field recorded by interferometric synthetic aperture radar. The rupture dip geometry is further optimized using a novel nonlinear‐crossover‐linear inversion approach. It is found that accounting for elastic heterogeneity and fault along‐strike curvilinearity improves the fit to the observed displacement field and yields a more accurate estimate of geodetic moment and Coulomb stress changes. We observe spatial correlations among the locations of aftershocks and patches of high slip, and rock anomalous elastic properties, suggesting that the shallow crust's elastic structures possibly controlled the Ridgecrest earthquake sequence. Most of the coseismic slip with a peak slip of 7.4 m at 3.6 km depth occurred above a zone of reducedS‐wave velocity and significant post‐Mw7.1 afterslip. This implies that viscous materials or fluid presence might have contributed to the low rupture velocity of the mainshock. Moreover, the zone of high slip on the northwest‐trending fault segment is laterally bounded by two aftershock clusters, whose location is characterized by intermediate rock rigidity. Notably, some minor orthogonal faults consistently end above a subsurface rigid body. Overall, these observations of structural controls improve our understandings of the seismogenesis within incipient fault systems.

     
    more » « less
  2. Abstract

    Observations of surface deformation within 1–2 km of a surface rupture contain invaluable information about the coseismic behavior of the shallow crust. We investigate the oblique strike‐slip 2016 M7 Kumamoto, Japan, earthquake, which ruptured the Futagawa‐Hinagu Fault. We solve for variable fault slip in an inversion of differential lidar topography, satellite optical image correlation, and Interferometric Synthetic Aperture Radar (InSAR)‐derived surface displacements. The near‐fault differential lidar pose several challenges. The model fault geometry must follow the surface trace at the sub‐kilometer scale. Integration of displacement datasets with different sensitivities to the 3D deformation field and varying spatial distribution permits additional complexity in the inferred slip but introduces ambiguity that requires careful selection of the regularization. We infer a Mwearthquake. The maximum slip of 6.9 m occurred at 4.5‐km depth, suggesting an on‐fault slip deficit in the upper several kilometers of the crust that likely reflects distributed and inelastic deformation within the shallow fault zone.

     
    more » « less
  3. Abstract

    The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain.

     
    more » « less
  4. Abstract

    The Sulaiman Fold Thrust (SFT) in Central Pakistan formed during the India‐Eurasia collision in the late Cenozoic. However, the mechanics of shortening of the brittle crust at time scales of seismic cycles is still poorly understood. Here, we use radar interferometry to analyze the deformation associated with the 2015 magnitude (Mw) 5.7 Dajal blind earthquake at the eastern boundary of the SFT. We use kinematic inversions to determine the distribution of slip on the frontal ramp and of flexural slip along active axial surfaces for the forward‐ and backward‐verging two end‐member models: a double fault‐bend‐fold system and a fault‐propagation‐fold. In both models, a décollement branches into a shallow ramp at approximately 7.5 km depth with coseismic folding in the hanging wall. The Dajal earthquake ruptured the base of the Boundary Thrust buried under the sediment from the Indus‐River floodplain, representing fault‐bend or fault‐propagation folding some 30 km off its nearest surface exposure.

     
    more » « less
  5. Abstract

    Nearly every type of slip behavior of which megathrusts are known to be capable of has been observed within a narrow ~75‐km‐wide strip of the Sunda megathrust—the Banyak Islands subsegment. The diverse list of recorded slip events starts with the great 1861MW ~ 8.5 earthquake and includes the 1907MW ~ 8.2 shallow tsunami earthquake, the 1966–1981 slow slip event, the great 2005MW8.6 Nias‐Simeulue earthquake and associated afterslip, many small (M < 6) to moderate (6 M < 7) earthquakes, and the large 6 April 2010MW7.8 Banyak Islands earthquake. In this paper we map out the spatial and temporal relationships between these slip events to search for a pattern and possible controls on slip behavior. We use GPS and coral geodetic data to derive a coseismic slip distribution for the relatively understudied 2010 event and find that this event fits like a puzzle piece into a low slip patch left by the 2005 event. We compare the recent slip sequence with the historical sequence associated with the 1861 event and find that the modern slip pattern could be a repeat of the historical slip pattern, possibly suggesting the importance of stationary fault properties in controlling slip. The diverse set of slip events mostly fit our expectations within depth‐dependent rupture zones; however, the overlaps between events of different slip types may complicate this conceptual model. Along strike, we suggest that a subducting fracture zone could act to diversify the slip behavior, and we explore possible mechanisms for this slip control.

     
    more » « less