skip to main content


Title: Magnetic Reconnection in the Space Sciences: Past, Present, and Future
Abstract

Magnetic reconnection converts, often explosively, stored magnetic energy to particle energy in space and in the laboratory. Through processes operating on length scales that are tiny, it facilitates energy conversion over dimensions of, in some cases, hundreds of Earth radii. In addition, it is the mechanism behind large current disruptions in fusion machines, and it can explain eruptive behavior in astrophysics. We have known about the importance of magnetic reconnection for quite some time based on space observations. Theory and modeling employed magnetized fluids, a very simplistic description. While successful at modeling the large‐scale consequences of reconnection, it is ill suited to describe the engine itself. This is because, at its heart, magnetic reconnection in space is kinetic, that is, governed by the intricate interaction of charged particles with the electromagnetic fields they create. This complex interaction occurs in very localized regions and involves very short temporal variations. Researching reconnection requires the ability to measure these processes as well as to express them in models vastly more complex than fluid approaches. Until very recently, neither of these capabilities existed. With the advent of NASA's Magnetospheric Multiscale mission and modern modeling advances, this has now changed, and we have now determined its small‐scale structure in exquisite detail. In this paper, we review recent research results to predict what will be achieved in the future. We discuss how reconnection contributes to the evolution of larger‐scale systems, and its societal impacts in the context of threatening space hazards, customarily referred to as “space weather.”

 
more » « less
Award ID(s):
1804428 1602769
NSF-PAR ID:
10374542
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the dynamics of the quiet solar corona is important for answering key questions including the coronal heating problem. Multiple studies have suggested small-scale magnetic-reconnection events may play a crucial role. These reconnection events are expected to involve acceleration of electrons to suprathermal energies, which can then produce nonthermal observational signatures. However, due to the paucity of sensitive high-fidelity observations capable of probing these nonthermal signatures, most studies were unable to quantify their nonthermal nature. Here we use joint radio observations from the Very Large Array (VLA) and the Expanded Owens Valley Solar Array (EOVSA) to detect transient emissions from the quiet solar corona in the microwave (GHz) domain. While similar transients have been reported in the past, their nonthermal nature could not be adequately quantified due to the unavailability of broadband observations. Using a much larger bandwidth available now with the VLA and EOVSA, in this study, we are able to quantify the nonthermal energy associated with two of these transients. We find that the total nonthermal energy associated with some of these transients can be comparable to or even larger than the total thermal energy of a nanoflare, which underpins the importance of nonthermal energy in the total coronal energy budget.

     
    more » « less
  2. ABSTRACT

    V2487 Oph is a recurrent nova with detected eruptions in 1900 and 1998. Startlingly, V2487 Oph shows flares, called ‘Superflares’, with up to 1.10 mag amplitude, fast rises of under one-minute, always with an initial impulsive spike followed by a roughly exponential tail, typically one-hour durations, and with random event times averaging once-per-day. The typical flare energy E is over 1038 erg, while the yearly energy budget is 1041 erg. V2487 Oph Superflares obey three relations; the number distribution of flare energies scales as E−2.34 ± 0.35, the waiting time from one flare to the next is proportional to E of the first event, and flare durations scale as E0.44 ± 0.03. Scenarios involving gravitational energy and nuclear energy fail to satisfy the three relations. The magnetic energy scenario, however, can explain all three relations. This scenario has magnetic field lines above the disc being twisted and amplified by the motions of their footprints, with magnetic reconnection releasing energy that comes out as Superflare light. This exact mechanism is already well known to occur in white light solar flares, in ordinary M-type flare stars, and in the many Superflare stars observed all across the H-R diagram. Superflares on Superflare stars have rise times, light-curve shapes, and durations that are very similar to those on V2487 Oph. So we conclude that the V2487 Oph Superflares are caused by large-scale magnetic reconnection. V2487 Oph is now the most extreme Superflare star, exhibiting the largest known flare energy (1.6 × 1039 erg) and the fastest occurrence rate.

     
    more » « less
  3. Abstract

    The EUI instrument on the Solar Orbiter spacecraft has obtained the most stable, high-resolution images of the solar corona from its orbit with a perihelion near 0.4 au. A sequence of 360 images obtained at 17.1 nm, between 2022 October 25 19:00 and 19:30 UT, is scrutinized. One image pixel corresponds to 148 km at the solar surface. The widely held belief that the outer atmosphere of the Sun is in a continuous state of magnetic turmoil is pitted against the EUI data. The observed plasma variations appear to fall into two classes. By far the dominant behavior is a very low amplitude variation in brightness (1%) in the coronal loops, with larger variations in some footpoint regions. No hints of observable changes in magnetic topology are associated with such small variations. The larger-amplitude, more rapid, rarer, and less well organized changes are associated with flux emergence. It is suggested therefore that while magnetic reconnection drives the latter, most of the active corona is heated with no evidence of a role for large-scale (observable) reconnection. Since most coronal emission-line widths are subsonic, the bulk of coronal heating, if driven by reconnection, can only be of tangentially discontinuous magnetic fields, with angles below about 0.5cS/cA∼ 0.3β, withβthe plasma beta parameter (∼0.01) andcSandcAthe sound and Alfvén speeds, respectively. If heated by multiple small flare-like events, then these must be ≲1021erg, i.e., picoflares. But processes other than reconnection have yet to be ruled out, such as viscous dissipation, which may contribute to the steady heating of coronal loops over active regions.

     
    more » « less
  4. Abstract

    Magnetic reconnection is an important source of energetic particles in systems ranging from astrophysics to the laboratory. The large separation of spatiotemporal scales involved makes it critical to determine the minimum physical model containing the necessary physics for modeling particle acceleration. By resolving the energy gain from ideal and nonideal magnetohydrodynamic electric fields self-consistently in kinetic particle-in-cell simulations of reconnection, we conclusively show the dominant role of the nonideal field for the early stage of energization known as injection. The importance of the nonideal field increases with magnetization, guide field, and in three dimensions, indicating its general importance for reconnection in natural astrophysical systems. We obtain the statistical properties of the injection process from the simulations, paving the way for the development of extended MHD models capable of accurately modeling particle acceleration in large-scale systems. The novel analysis method developed in this study can be applied broadly to give new insight into a wide range of processes in plasma physics.

     
    more » « less
  5. Abstract

    Thin synchrotron-emitting filaments are increasingly seen in the intracluster medium (ICM). We present the first example of a direct interaction between a magnetic filament, a radio jet, and a dense ICM clump in the poor cluster A194. This enables the first exploration of the dynamics and possible histories of magnetic fields and cosmic rays in such filaments. Our observations are from the MeerKAT Galaxy Cluster Legacy Survey and the LOFAR Two-Meter Sky Survey. Prominent 220 kpc long filaments extend east of radio galaxy 3C40B, with very faint extensions to 300 kpc, and show signs of interaction with its northern jet. They curve around a bend in the jet and intersect the jet in Faraday depth space. The X-ray surface brightness drops across the filaments; this suggests that the relativistic particles and fields contribute significantly to the pressure balance and evacuate the thermal plasma in a ∼35 kpc cylinder. We explore whether the relativistic electrons could have streamed along the filaments from 3C40B, and present a plausible alternative whereby magnetized filaments are (a) generated by shear motions in the large-scale, post-merger ICM flow, (b) stretched by interactions with the jet and flows in the ICM, amplifying the embedded magnetic fields, and (c) perfused by re-energized relativistic electrons through betatron-type acceleration or diffusion of turbulently accelerated ICM cosmic-ray electrons. We use the Faraday depth measurements to reconstruct some of the 3D structures of the filameGnts and of 3C40A and B.

     
    more » « less