skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Neural system and receptor diversity in the ctenophore Beroe abyssicola
Abstract

Although, neurosensory systems might have evolved independently in ctenophores, very little is known about their organization and functions. Most ctenophores are pelagic and deep‐water species and cannot be bred in the laboratory. Thus, it is not surprising that neuroanatomical data are available for only one genus within the group—Pleurobrachia. Here, using immunohistochemistry and scanning electron microscopy, we describe the organization of two distinct neural subsystems (subepithelial and mesogleal) and the structure of different receptor types in the comb jellyBeroe abyssicolathe voracious predator from North Pacific. A complex subepithelial neural network ofBeroe, with five receptor types, covers the entire body surface and expands deep into the pharynx. Three types of mesogleal neurons are comparable to the cydippidPleurobrachia. The predatory lifestyle ofBeroeis supported by the extensive development of ciliated and muscular structures including the presence of giant muscles and feeding macrocilia. The obtained cell‐type atlas illustrates different examples of lineage‐specific innovations within these enigmatic marine animals and reveals the remarkable complexity of sensory and effector systems in this clade of basal Metazoa.

 
more » « less
Award ID(s):
1645219
NSF-PAR ID:
10374580
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
527
Issue:
12
ISSN:
0021-9967
Page Range / eLocation ID:
p. 1986-2008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ctenophores are descendants of one of the earliest branching metazoan lineage with enigmatic nervous systems. The lack of convenient neurogenic molecules and neurotransmitters suggests an extensive parallel evolution and independent origins of neurons and synapses. However, the field lags due to the lack of microanatomical data about the neuro‐muscular systems in this group of animals. Here, using immunohistochemistry and scanning electron microscopy, we describe the organization of both muscular and nervous systems in the sea gooseberry,Pleurobrachia bachei,from North Pacific. The diffuse neural system ofPleurobrachiaconsists of two subsystems: the subepithelial neural network and the mesogleal net with about 5,000–7,000 neurons combined. Our data revealed the unexpected complexity of neuromuscular organization in this basal metazoan lineage. The anatomical diversity of cell types includes at least nine broad categories of neurons, five families of surface receptors and more than two dozen types of muscle cells as well as regional concentrations of neuronal elements to support ctenophore feeding, complex swimming, escape, and prey capture behaviors. In summary, we recognize more than 80 total morphological cell types. Thus, in terms of cell‐type specification and diversity, ctenophores significantly exceed what we currently know about other prebilaterian groups (placozoan, sponges, and cnidarians), and some basal bilaterians.

     
    more » « less
  2. Abstract

    Ctenophores are descendants of an early branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals.Mnemiopsisis one of the important reference ctenophore species. However, little is known about its neuromuscular organization. Here, we mapped and tracked the development of the neural and muscular elements in the early hatching cydippid larvae, as well as adultMnemiopsis leidyi. The overall development of the neuromuscular system inMnemiopsiswas very similar toPleurobrachia bachei, although inMnemiopsisthe entire process occurred significantly faster. The subepithelial neural cells were observed immediately after hatching. This population consisted of a dozen of separated individual neurons with short neurites. In about 2 days, when their neurites grew significantly longer and connected to their neighbors, they began to form a canonical polygonal subepithelial network. Mesogleal neural elements prominent in all studied adult ctenophores were not detectable inMnemiopsislarvae but were clearly labeled in closely related Lobata speciesBolinopsis infundibulum. Hatched larvae also had putative mechanoreceptors with long stereocilia and approximately two dozen muscle cells. In adultMnemiopsis,the feeding lobes and auricles contained two distinct populations of neurons and neural ensembles that were not observed in other ctenophore lineages and likely represented elaborate neuronal innovations characteristic for the clade Lobata and their lifestyles.

     
    more » « less
  3. Abstract

    Ctenophora is an early‐branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals. However, despite the profound diversity among ctenophores, basal neuroanatomical data are limited to representatives of two genera. Here, we describe the organization of neuromuscular systems in eight ctenophore species focusing onEuplokamis dunlapae—the representative of the lineage sister to all other ctenophores. Cydippids (Hormiphora hormiphoraandDryodora glandiformis) and lobates (Bolinopsis infundibulumandMnemiopsis leidyi) were used as reference platforms to cover both morphological and ecological diversity within the phylum. We show that even with substantial environmental differences, the basal organization of neural systems is conserved among ctenophores. In all species, we detected two distributed neuronal subsystems: the subepithelial polygonal network and the mesogleal elements. Nevertheless, each species developed specific innovations in neural, muscular, and receptor systems. Most notableEuplokamis‐specific features are the following: (a) Comb nerves with giant axons. These nerves directly coordinate the rapid escape response bypassing the central integrative structure known as the aboral sensory organ. (b) Neural processes in tentacles along the rows of “boxes” providing structural support and located under striated muscles. (c) Radial muscles that cross the mesoglea and connect the outer wall to the aboral canal. (d) Flat muscles, encircling each meridional canal. Also, we detected a structurally different rectangular neural network in the feeding lobes of Lobata (Mnemiopsis/Bolinopsis) but not in other species. The described lineage‐specific innovations can be used for future single‐cell atlases of ctenophores and analyses of neuronal evolution in basal metazoans.

     
    more » « less
  4. Abstract Background

    Astyanax mexicanusis a well‐established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems.

    Results

    Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficientTol2system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population ofAstyanax. To define specific cell‐types, a Cntnap2‐mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish.

    Conclusion

    The lines provide proof‐of‐principle for the application ofTol2transgenic technology inA. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype‐phenotype gap.

     
    more » « less
  5. Abstract

    Ctenophores coordinate large macrociliary structures called ctenes to propel themselves through the water. The morphology and kinematics of the ctenes mediate swimming performance. We investigated morphological and kinematic factors affecting swimming performance in free‐swimming ctenophores (Pleurobrachia bachei) using high speed videography. Our morphological results showed that the relationship between body size and ctene morphology and arrangement inP. bacheiwere well described using linear (i.e., isometric) relationships, which suggests functional limitations of ctenes that vary among individuals of different sizes. Our kinematic results showed that isometric constraints on swimming performance can potentially be overcome by alterations in kinematics: (a) swimming speed inP. bacheiincreased with ctene beat frequency over a range of body lengths, and (b) the separation of ctenes into clumps of cilia allowed the ctene to increase in width during the effective stroke and decrease in width during recovery. Separation increases the surface area of the ctene during the effective stroke, likely increasing the thrust produced. The finding that ctenes are not monoliths and instead are separated into clumps of cilia has not been previously described, and we subsequently observed this trait in three other ctenophore species:Euplokamis dunlapae,Bolinopsis infundibulum,andBeroe mitrata. Flexibility in function may be a necessary corollary to isometric development of the ctenes as propulsive structures.

     
    more » « less