skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative neuroanatomy of ctenophores: Neural and muscular systems in Euplokamis dunlapae and related species
Abstract Ctenophora is an early‐branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals. However, despite the profound diversity among ctenophores, basal neuroanatomical data are limited to representatives of two genera. Here, we describe the organization of neuromuscular systems in eight ctenophore species focusing onEuplokamis dunlapae—the representative of the lineage sister to all other ctenophores. Cydippids (Hormiphora hormiphoraandDryodora glandiformis) and lobates (Bolinopsis infundibulumandMnemiopsis leidyi) were used as reference platforms to cover both morphological and ecological diversity within the phylum. We show that even with substantial environmental differences, the basal organization of neural systems is conserved among ctenophores. In all species, we detected two distributed neuronal subsystems: the subepithelial polygonal network and the mesogleal elements. Nevertheless, each species developed specific innovations in neural, muscular, and receptor systems. Most notableEuplokamis‐specific features are the following: (a) Comb nerves with giant axons. These nerves directly coordinate the rapid escape response bypassing the central integrative structure known as the aboral sensory organ. (b) Neural processes in tentacles along the rows of “boxes” providing structural support and located under striated muscles. (c) Radial muscles that cross the mesoglea and connect the outer wall to the aboral canal. (d) Flat muscles, encircling each meridional canal. Also, we detected a structurally different rectangular neural network in the feeding lobes of Lobata (Mnemiopsis/Bolinopsis) but not in other species. The described lineage‐specific innovations can be used for future single‐cell atlases of ctenophores and analyses of neuronal evolution in basal metazoans.  more » « less
Award ID(s):
1645219 1548121
PAR ID:
10374608
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
528
Issue:
3
ISSN:
0021-9967
Page Range / eLocation ID:
p. 481-501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ctenophores are descendants of an early branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals.Mnemiopsisis one of the important reference ctenophore species. However, little is known about its neuromuscular organization. Here, we mapped and tracked the development of the neural and muscular elements in the early hatching cydippid larvae, as well as adultMnemiopsis leidyi. The overall development of the neuromuscular system inMnemiopsiswas very similar toPleurobrachia bachei, although inMnemiopsisthe entire process occurred significantly faster. The subepithelial neural cells were observed immediately after hatching. This population consisted of a dozen of separated individual neurons with short neurites. In about 2 days, when their neurites grew significantly longer and connected to their neighbors, they began to form a canonical polygonal subepithelial network. Mesogleal neural elements prominent in all studied adult ctenophores were not detectable inMnemiopsislarvae but were clearly labeled in closely related Lobata speciesBolinopsis infundibulum. Hatched larvae also had putative mechanoreceptors with long stereocilia and approximately two dozen muscle cells. In adultMnemiopsis,the feeding lobes and auricles contained two distinct populations of neurons and neural ensembles that were not observed in other ctenophore lineages and likely represented elaborate neuronal innovations characteristic for the clade Lobata and their lifestyles. 
    more » « less
  2. Abstract Although, neurosensory systems might have evolved independently in ctenophores, very little is known about their organization and functions. Most ctenophores are pelagic and deep‐water species and cannot be bred in the laboratory. Thus, it is not surprising that neuroanatomical data are available for only one genus within the group—Pleurobrachia. Here, using immunohistochemistry and scanning electron microscopy, we describe the organization of two distinct neural subsystems (subepithelial and mesogleal) and the structure of different receptor types in the comb jellyBeroe abyssicola—the voracious predator from North Pacific. A complex subepithelial neural network ofBeroe, with five receptor types, covers the entire body surface and expands deep into the pharynx. Three types of mesogleal neurons are comparable to the cydippidPleurobrachia. The predatory lifestyle ofBeroeis supported by the extensive development of ciliated and muscular structures including the presence of giant muscles and feeding macrocilia. The obtained cell‐type atlas illustrates different examples of lineage‐specific innovations within these enigmatic marine animals and reveals the remarkable complexity of sensory and effector systems in this clade of basal Metazoa. 
    more » « less
  3. Abstract Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key reference lineage to understand early origins and evolution of the neural systems. The hydromedusaAglantha digitaleis arguably the best electrophysiologically studied jellyfish because of its system of giant axons and unique fast swimming/escape behaviors. Here, using a combination of scanning electron microscopy and immunohistochemistry together with phalloidin labeling, we systematically characterize both neural and muscular systems inAglantha, summarizing and expanding further the previous knowledge on the microscopic neuroanatomy of this crucial reference species. We found that the majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are different from those revealed by anti‐α‐tubulin immunostaining, making these two neuronal markers complementary to each other and, therefore, expanding the diversity of neural elements inAglanthawith two distinct neural subsystems. Our data uncovered the complex organization of neural networks forming a functional “annulus‐type” central nervous system with three subsets of giant axons, dozen subtypes of neurons, muscles, and a variety of receptors fully integrated with epithelial conductive pathways supporting swimming, escape and feeding behaviors. The observed unique adaptations within theAglanthalineage (including giant axons innervating striated muscles) strongly support an extensive and wide‐spread parallel evolution of integrative and effector systems across Metazoa. 
    more » « less
  4. Abstract Lobate ctenophores are often numerically dominant members of oceanic epipelagic and midwater ecosystems. Despite this, little is known about their trophic ecology. Multiple, co‐occurring species are often found in these ecosystems and appear to feed similarly via feeding currents that entrain prey. We quantified the hydrodynamics, morphology, and behavior of four co‐occurring, cosmopolitan lobate species (Eurhamphaea vexilligera,Ocyropsis crystallina,Bolinopsis vitrea, andLeucothea multicornis) to evaluate whether their feeding mechanics lead to differential feeding rates and prey selection. We compared the feeding characteristics of these four oceanic species to the coastal lobate ctenophore,Mnemiopsis leidyi, which is known as a voracious zooplanktivore. We found that despite their morphological diversity, the five lobate species used the same mechanism to generate their feeding current—the hydrodynamics of their feeding currents were similarly laminar and with very low fluid deformation rates. Despite having similar feeding current traits, the species had different in situ swimming behaviors and feeding postures. We show that these different behaviors and postures lead to different prey encounter rates and that several of the oceanic species have the potential to feed at rates similar to or greater thanM. leidyi. As such, the individual and combined trophic impact of oceanic lobate ctenophores is likely to be much greater than previously predicted. 
    more » « less
  5. Koski, Marja (Ed.)
    Abstract Ctenophores are numerically dominant members of oceanic epipelagic communities around the world. The ctenophore community is often comprised of several common, co-occurring lobate and cestid genera. Previous quantifications of the amount of fluid that lobate ctenophores entrain in their feeding currents revealed that oceanic lobates have the potential for high feeding rates. In order to more directly examine the trophic role of oceanic lobate ctenophores, we quantified the encounter and retention efficiencies of several co-occurring species (Bolinopsis vitrea, Ocyropsis crystallina, Eurhamphea vexilligera and Cestum veneris) in their natural environments. Encounters and predator–prey interactions were video recorded in the field using specialized cameras and SCUBA techniques. The lobate species encountered, on average, 2.4 prey per minute and ingested 40% of these prey. This translated to an estimated ingestion rate of close to 1 prey per minute. Cestum veneris and most of the lobate species retained prey as efficiently as the voracious coastal lobate predator Mnemiopsis leidyi, suggesting that these oceanic species have a similar predation impact in their environments as M. leidyi does in coastal ecosystems. Hence, quantified in situ predatory-prey interactions indicate that epipelagic ctenophores have a significant impact on oceanic ecosystems worldwide. 
    more » « less