skip to main content


Title: Large Eddy Simulations of the Dusty Martian Convective Boundary Layer With MarsWRF
Abstract

Large eddy simulation (LES) of the Martian convective boundary layer (CBL) with a Mars‐adapted version of the Weather Research and Forecasting model is used to examine the impact of aerosol dust radiative‐dynamical feedbacks on turbulent mixing. The LES is validated against spacecraft observations and prior modeling. To study dust redistribution by coherent dynamical structures within the CBL, two radiatively active dust distribution scenarios are used: one in which the dust distribution remains fixed and another in which dust is freely transported by CBL motions. In the fixed dust scenario, increasing atmospheric dust loading shades the surface from sunlight and weakens convection. However, a competing effect emerges in the free dust scenario, resulting from the lateral concentration of dust in updrafts. The resulting enhancement of dust radiative heating in upwelling plumes both generates horizontal thermal contrasts in the CBL and increases buoyancy production, jointly enhancing CBL convection. We define a dust inhomogeneity index (DII) to quantify how much dust is concentrated in upwelling plumes. If the DII is large enough, the destabilizing effect of lateral heating contrasts can exceed the stabilizing effect of surface shading such that the CBL depth increases with increasing dust optical depth. Thus, under certain combinations of total dust optical depth and the lateral inhomogeneity of dust, a positive feedback exists between dust optical depth, the vigor and depth of CBL mixing, and—to the extent that dust lifting is controlled by the depth and vigor of CBL mixing—the further lifting of dust from the surface.

 
more » « less
Award ID(s):
1740921
NSF-PAR ID:
10374583
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Planets
Volume:
126
Issue:
9
ISSN:
2169-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study evaluates the methods of identifying the heightziof the top of the convective boundary layer (CBL) during winter (December and January) over the Great Lakes and nearby land areas using observations taken by the University of Wyoming King Air research aircraft during the Lake-Induced Convection Experiment (1997/98) and Ontario Winter Lake-effect Systems (2013/14) field campaigns. Since CBLs facilitate vertical mixing near the surface, the most direct measurement ofziis that above which the vertical velocity turbulent fluctuations are weak or absent. Thus, we usezifrom the turbulence method as the “reference value” to whichzifrom other methods, based on bulk Richardson number (Rib), liquid water content, and vertical gradients of potential temperature, relative humidity, and water vapor mixing ratio, are compared. The potential temperature gradient method using a threshold value of 0.015 K m−1for soundings over land and 0.011 K m−1for soundings over lake provided the estimates ofzithat are most consistent with the turbulence method. The Ribthreshold-based method, commonly used in numerical simulation studies, underestimatedzi. Analyzing the methods’ performance on the averaging windowzavgwe recommend usingzavg= 20 or 50 m forziestimations for lake-effect boundary layers. The present dataset consists of both cloudy and cloud-free boundary layers, some having decoupled boundary layers above the inversion top. Because cases of decoupled boundary layers appear to be formed by nearby synoptic storms, we recommend use of the more general term, elevated mixed layers.

    Significance Statement

    The depthziof the convective atmospheric boundary layer (CBL) strongly influences precipitation rates during lake-effect snowstorms (LES). However, variousziapproximation methods produce significantly different results. This study utilizes extensive concurrently collected observations by project aircraft during two LES field studies [Lake-Induced Convection Experiment (Lake-ICE) and OWLeS] to assess howzifrom common estimation methods compare with “reference”ziderived from turbulent fluctuations, a direct measure of CBL mixing. For soundings taken both over land and lake; with cloudy or cloud-free conditions, potential temperature gradient (PTG) methods provided the best agreement with the referencezi. A method commonly employed in numerical simulations performed relatively poorly. Interestingly, the PTG method worked equally well for “coupled” and elevated decoupled CBLs, commonly associated with nearby cyclones.

     
    more » « less
  2. Abstract. Mineral dust aerosols cool and warm the atmosphere byscattering and absorbing solar (shortwave: SW) and thermal (longwave: LW)radiation. However, significant uncertainties remain in dust radiativeeffects, largely due to differences in the dust size distribution andspectral optical properties simulated in Earth system models. Dust modelstypically underestimate the coarse dust load (more than 2.5 µm indiameter) and assume a spherical shape, which leads to an overestimate ofthe fine dust load (less than 2.5 µm) after the dust emissions in themodels are scaled to match observed dust aerosol optical depth at 550 nm(DAOD550). Here, we improve the simulated dust properties with data setsthat leverage measurements of size-resolved dust concentration, asphericityfactor, and refractive index in a coupled global chemical transport modelwith a radiative transfer module. After the adjustment of size-resolved dustconcentration and spectral optical properties, the global and annual averageof DAOD550 from the simulation increases from 0.023 to 0.029 and fallswithin the range of a semi-observationally based estimate (0.030 ± 0.005). The reduction of fine dust load after the adjustment leads to areduction of the SW cooling at the top of the atmosphere (TOA). To improveagreement against a semi-observationally based estimate of the radiativeeffect efficiency at TOA, we find that a less absorptive SW dust refractiveindex is required for coarser aspherical dust. Thus, only a minor differenceis estimated for the net global dust radiative effect at TOA (−0.08 vs.−0.00 W m−2 on a global scale). Conversely, our sensitivitysimulations reveal that the surface warming is substantially enhanced nearthe strong dust source regions (less cooling to −0.23 from −0.60 W m−2 on a global scale). Thus, less atmospheric radiativeheating is estimated near the major source regions (less heating to 0.15from 0.59 W m−2 on a global scale), because of enhanced LWwarming at the surface by the synergy of coarser size and aspherical shape. 
    more » « less
  3. Abstract

    A low‐level barrier jet (LLBJ) formed along the northeast slope of the Tibetan Plateau on March 17, 2010. The LLBJ was accompanied by a major dust event. Numerical simulations conducted with the Weather Research and Forecasting dust (WRF‐dust) model show that the formation of the LLBJ was primarily due to mid‐level, southeastward descent of high momentum air, which impinged on the north slope of the Tibetan Plateau, resulting in ageostrophic flow acceleration under geostrophic adjustment. The LLBJ was reinforced by the Bernoulli effect, where the physical barrier associated with the Tibetan Plateau to the southwest and the virtual barrier associated with sloped, packed isentropic surfaces to the northeast combined to constrict the air flow, thus augmenting the acceleration of the air as it entered the Hexi Corridor. The simulations show that the LLBJ, which stayed close to the western entrance of the Hexi Corridor, gradually descended during the daytime until early evening. During this period, the core of the LLBJ stayed directly above the 302‐K isentropic surface. The LLBJ, which was located to the south of the main dust plume, was modulated by dust radiative heating and cooling. Over the main dust plume, as well as in the LLBJ region, radiative heating of the dust warmed the upper part of the boundary layer and cooled it below, which stabilized the boundary layer, decreased the boundary layer depth, and reduced the vertical mixing, causing the surface winds to weaken. As a consequence of the feedback between the circulation and the dust radiative forcing, the total dust emission was reduced by ∼9.7–11% and peaked 1–2 hr earlier than without dust radiative effects, while the LLBJ's intensity, which was 1–2 m·s−1stronger, was better maintained within the boundary layer during the daytime until early evening.

     
    more » « less
  4. Radiative transfer through clouds can be impacted by variations in particle number size distribution, but also in particle spatial distribution. Due to turbulent mixing and inertial effects, spatial correlations often exist, even on scales reaching the cloud droplet separation distance. The resulting clusters and voids within the droplet field can lead to deviations from exponential extinction. Prior work has numerically investigated these departures from exponential attenuation in absorptive and scattering media; this work takes a step towards determining the feasibility of detecting departures from exponential behavior due to spatial correlation in turbulent clouds generated in a laboratory setting. Large Eddy Simulation (LES) is used to mimic turbulent mixing clouds generated in a laboratory convection cloud chamber. Light propagation through the resulting polydisperse and spatially correlated particle fields is explored via Monte Carlo ray tracing simulations. The key finding is that both mean radiative flux and standard deviation about the mean differ when correlations exist, suggesting that an experiment using a laboratory convection cloud chamber could be designed to investigate non-exponential behavior. Total forward flux is largely unchanged (due to scattering being highly forward-dominant for the size parameters considered), allowing it to be used for conditional sampling based on optical thickness. Direct and diffuse forward flux means are modified by approximately one standard deviation. Standard deviations of diffuse forward and backward fluxes are strongly enhanced, suggesting that fluctuations in the scattered light are a more sensitive metric to consider. The results also suggest the possibility that measurements of radiative transfer could be used to infer the strength and scales of correlations in a turbulent cloud, indicating entrainment and mixing effects. 
    more » « less
  5. We use three‐dimensional numerical experiments of thin shell convection to explore what effects an expected latitudinal variation in solar insolation may have on a convection. We find that a global flow pattern of upwelling equatorial regions and downwelling polar regions, linked to higher and lower surface temperatures (Ts), respectively, is preferred. Due to the gradient inTs, boundary layer thicknesses vary from equatorial lows to polar highs, and polar oriented flow fields are established. AHadley cell‐type configuration with two hemispheric‐scale convective cells emerges with heat flow enhanced along the equator and suppressed poleward. The poleward transport pattern appears robust under a range of basal and mixed heating, isoviscous and temperature‐dependent viscosity, vigor of convection, and different degrees ofTsvariations. Our findings suggest that a latitudinal variation inTsis an important effect for convection within the thin ice shells of the outer satellites, becoming increasingly important as solar luminosity increases. VariableTsmodels predict lower heat flow and a more compressional regime near downwellings at higher latitudes, and higher heat flow and a more extensional regime near the equator. Within the ice shell, Hadley style flow could lead to large‐scale anisotropic ice properties that might be detectable with future seismic or electro‐magnetic observations. 
    more » « less