skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large Eddy Simulations of the Dusty Martian Convective Boundary Layer With MarsWRF
Abstract Large eddy simulation (LES) of the Martian convective boundary layer (CBL) with a Mars‐adapted version of the Weather Research and Forecasting model is used to examine the impact of aerosol dust radiative‐dynamical feedbacks on turbulent mixing. The LES is validated against spacecraft observations and prior modeling. To study dust redistribution by coherent dynamical structures within the CBL, two radiatively active dust distribution scenarios are used: one in which the dust distribution remains fixed and another in which dust is freely transported by CBL motions. In the fixed dust scenario, increasing atmospheric dust loading shades the surface from sunlight and weakens convection. However, a competing effect emerges in the free dust scenario, resulting from the lateral concentration of dust in updrafts. The resulting enhancement of dust radiative heating in upwelling plumes both generates horizontal thermal contrasts in the CBL and increases buoyancy production, jointly enhancing CBL convection. We define a dust inhomogeneity index (DII) to quantify how much dust is concentrated in upwelling plumes. If the DII is large enough, the destabilizing effect of lateral heating contrasts can exceed the stabilizing effect of surface shading such that the CBL depth increases with increasing dust optical depth. Thus, under certain combinations of total dust optical depth and the lateral inhomogeneity of dust, a positive feedback exists between dust optical depth, the vigor and depth of CBL mixing, and—to the extent that dust lifting is controlled by the depth and vigor of CBL mixing—the further lifting of dust from the surface.  more » « less
Award ID(s):
1740921
PAR ID:
10374583
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Planets
Volume:
126
Issue:
9
ISSN:
2169-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It has been proposed that hot spot tracks are caused by moving rigid plates above relatively stationary hot spots. However, the fixity of hot spots remains under debate. Here, we perform 3‐D very high resolution (<25 km laterally) global mantle convection models with realistic convection vigor to investigate the lateral motion of mantle plumes. We find that the lateral motion of plumes beneath the Pacific plate is statistically similar to that beneath the Indo‐Atlantic plates. In the past 80 Ma, the majority (>90%) of plumes move laterally with an average speed of 0–20 mm/year under the no‐net‐rotation reference frame, and there are a small portion (~10–20%) of plumes whose lateral motion is less than 5 mm/year. The geodynamic modeling results are statistically in a good agreement with the hot spot motions in the last 5 Ma estimated from observation‐based kinematic models. Our results suggest a small‐to‐moderate (0–20 mm/year) lateral motion of most plume‐induced hot spots. 
    more » « less
  2. Abstract We demonstrate that an extended eddy‐diffusivity mass‐flux (EDMF) scheme can be used as a unified parameterization of subgrid‐scale turbulence and convection across a range of dynamical regimes, from dry convective boundary layers, through shallow convection, to deep convection. Central to achieving this unified representation of subgrid‐scale motions are entrainment and detrainment closures. We model entrainment and detrainment rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment is represented as downgradient diffusion between plumes and their environment. Dynamical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume and a vertical velocity scale, that is modulated by heuristic nondimensional functions which represent their relative magnitudes and the enhanced detrainment due to evaporation from clouds in drier environment. We first evaluate the closures offline against entrainment and detrainment rates diagnosed from large‐eddy simulations (LES) in which tracers are used to identify plumes, their turbulent environment, and mass and tracer exchanges between them. The LES are of canonical test cases of a dry convective boundary layer, shallow convection, and deep convection, thus spanning a broad range of regimes. We then compare the LES with the full EDMF scheme, including the new closures, in a single column model (SCM). The results show good agreement between the SCM and LES in quantities that are key for climate models, including thermodynamic profiles, cloud liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM also captures well the diurnal cycle of convection and the onset of precipitation. 
    more » « less
  3. Abstract This study evaluates the methods of identifying the heightziof the top of the convective boundary layer (CBL) during winter (December and January) over the Great Lakes and nearby land areas using observations taken by the University of Wyoming King Air research aircraft during the Lake-Induced Convection Experiment (1997/98) and Ontario Winter Lake-effect Systems (2013/14) field campaigns. Since CBLs facilitate vertical mixing near the surface, the most direct measurement ofziis that above which the vertical velocity turbulent fluctuations are weak or absent. Thus, we usezifrom the turbulence method as the “reference value” to whichzifrom other methods, based on bulk Richardson number (Rib), liquid water content, and vertical gradients of potential temperature, relative humidity, and water vapor mixing ratio, are compared. The potential temperature gradient method using a threshold value of 0.015 K m−1for soundings over land and 0.011 K m−1for soundings over lake provided the estimates ofzithat are most consistent with the turbulence method. The Ribthreshold-based method, commonly used in numerical simulation studies, underestimatedzi. Analyzing the methods’ performance on the averaging windowzavgwe recommend usingzavg= 20 or 50 m forziestimations for lake-effect boundary layers. The present dataset consists of both cloudy and cloud-free boundary layers, some having decoupled boundary layers above the inversion top. Because cases of decoupled boundary layers appear to be formed by nearby synoptic storms, we recommend use of the more general term, elevated mixed layers. Significance StatementThe depthziof the convective atmospheric boundary layer (CBL) strongly influences precipitation rates during lake-effect snowstorms (LES). However, variousziapproximation methods produce significantly different results. This study utilizes extensive concurrently collected observations by project aircraft during two LES field studies [Lake-Induced Convection Experiment (Lake-ICE) and OWLeS] to assess howzifrom common estimation methods compare with “reference”ziderived from turbulent fluctuations, a direct measure of CBL mixing. For soundings taken both over land and lake; with cloudy or cloud-free conditions, potential temperature gradient (PTG) methods provided the best agreement with the referencezi. A method commonly employed in numerical simulations performed relatively poorly. Interestingly, the PTG method worked equally well for “coupled” and elevated decoupled CBLs, commonly associated with nearby cyclones. 
    more » « less
  4. Abstract The shortwave direct radiative effect of dust, the difference between net shortwave radiative flux in a cloud free and cloud and aerosol free atmosphere, is typically estimated using forward calculations made with a radiative transfer model. However, estimates of the direct radiative effect made via this initial method can be highly uncertain due to difficultly in accurately describing the relevant optical and physical properties of dust used in these calculations. An alternative approach to estimate this effect is to determine the forcing efficiency, or the direct radiative effect normalized by aerosol optical depth. While this approach avoids the uncertainties associated with the initial method for calculating the direct effect, random errors and biases associated with this approach have not been thoroughly examined in literature. Here we explore biases in this observation‐based approach that are related to atmospheric water vapor. We use observations to show that over the Sahara Desert dust optical depth and column‐integrated atmospheric water vapor are positively correlated. We use three idealized radiative models of varying complexity to demonstrate that a positive correlation between dust and water vapor produces a positive bias in the dust forcing efficiency estimated via the observation‐based method. We describe a simple modification to the observation‐based method that correctly accounts for the correlation between dust and water vapor when estimating the forcing efficiency and use this method to estimate the instantaneous forcing efficiency of dust over the Sahara Desert using satellite data, obtaining −12.3 ± 6.68 to 20.9 ± 11.9 W m−2per unit optical depth. 
    more » « less
  5. Abstract. Mineral dust aerosols cool and warm the atmosphere byscattering and absorbing solar (shortwave: SW) and thermal (longwave: LW)radiation. However, significant uncertainties remain in dust radiativeeffects, largely due to differences in the dust size distribution andspectral optical properties simulated in Earth system models. Dust modelstypically underestimate the coarse dust load (more than 2.5 µm indiameter) and assume a spherical shape, which leads to an overestimate ofthe fine dust load (less than 2.5 µm) after the dust emissions in themodels are scaled to match observed dust aerosol optical depth at 550 nm(DAOD550). Here, we improve the simulated dust properties with data setsthat leverage measurements of size-resolved dust concentration, asphericityfactor, and refractive index in a coupled global chemical transport modelwith a radiative transfer module. After the adjustment of size-resolved dustconcentration and spectral optical properties, the global and annual averageof DAOD550 from the simulation increases from 0.023 to 0.029 and fallswithin the range of a semi-observationally based estimate (0.030 ± 0.005). The reduction of fine dust load after the adjustment leads to areduction of the SW cooling at the top of the atmosphere (TOA). To improveagreement against a semi-observationally based estimate of the radiativeeffect efficiency at TOA, we find that a less absorptive SW dust refractiveindex is required for coarser aspherical dust. Thus, only a minor differenceis estimated for the net global dust radiative effect at TOA (−0.08 vs.−0.00 W m−2 on a global scale). Conversely, our sensitivitysimulations reveal that the surface warming is substantially enhanced nearthe strong dust source regions (less cooling to −0.23 from −0.60 W m−2 on a global scale). Thus, less atmospheric radiativeheating is estimated near the major source regions (less heating to 0.15from 0.59 W m−2 on a global scale), because of enhanced LWwarming at the surface by the synergy of coarser size and aspherical shape. 
    more » « less